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Summary 

In recent years, the use of genetic manipulation techniques has opened the door for 

obtaining microorganisms with enhanced phenotypes, which has in turn led to significant 

improvements in the synthesis of certain biochemical products. However, in most cases 

mutation and selection of these new processes has been performed in a trial-and-error 

basis. Hence, it is expected that these processes could be further improved if quantitative 

design principles were used to guide the search towards the ideal enzymatic profiles.  

Mathematical programming and particularly optimization have the potential to provide 

such guidelines yet standard optimization techniques fail at solving the problems arising 

when kinetic models are used. The reason for this is that the associated problems may 

contain multiple local optima in which standard optimizers may get trapped during the 

search. Hence, one must resort to global optimization techniques in order to identify the 

so-called global optimum of the problem. Even though some algorithms have already 

been developed for this, they are general purpose and usually fail at solving realistic 

problems. This thesis is devoted to overcoming such limitations by developing a set of 

advanced global optimization tools to assess metabolic engineering problems and other 

questions arising in systems biology.  

Specifically, an outer approximation-based algorithm was developed in [1] with the 

aim of addressing metabolic engineering problems. The framework proposed relies on 

representing the metabolic network via the Generalized Mass Action (GMA) model and 

then performing a tailored global optimization of the system in order to obtain the 

enzymatic profile leading to an optimal product yield. Two case studies consisting of the 

fermentation of Saccaromyces cerevisiae and the citric acid production in Aspergillus 

niger were addressed. 

Later, in [2], a similar strategy was devised for the same purpose, but this time the 

outer approximation was replaced by a customized spatial branch-and-bound. This 

method exploits the mathematical structure of GMA models to expedite calculations in 

the more complex cases. This is illustrated by means of comparison between this strategy 

and both, our previously developed outer approximation and the state-of-art global 

optimization solver (BARON) for a case study involving the citric acid production in 

Aspergillus niger.  

Metabolic engineering studies are not the only ones that benefit from optimization 

techniques. For instance, these methods can also help understanding the evolution of the 

strategies that organisms employ to adapt to different environmental situations. 

Mathematically, the conditions that ensure survival of the microorganism can be modeled 

as a set of constraints limiting different variables (i.e., enzyme activities) of its metabolic 

network. Hence, predicting an adaptive response involves determining the set of feasible 

changes in the enzyme activities that fulfill this set of constraints, that is, characterizing 

the feasible space of the mathematical problem associated. In [3] we developed a method 

based on our outer approximation algorithm that enables a systematic characterization of 

the feasible space of a problem, and thus, of the physiological requirements that may 

underlie the evolution of adaptive strategies. Specifically, the methodology was used to 

explain the adaptation of yeast to a heat shock by means of comparing the model 

predictions with the experimental observations. Additionally, different objective 
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functions were considered and studied as potential drivers of the actual adaptive process 

of the microorganism. 

Methods presented so far can be applied when the metabolic network is described via 

the GMA representation. In order to extend this framework to other kinetic models, we 

resort to a symbolic reformulation strategy under the name of recasting. This technique 

permits the exact transformation of a model of arbitrary form into a canonical GMA 

model, at the expense of increasing the number of variables of the original model. 

Nonetheless, once a model has been transformed into its GMA equivalent, we can 

effectively apply the optimization and feasibility analysis originally devised for GMA 

models. In [4], we showed how to perform the recasting for a particular formalism, the 

Saturable and Cooperative (SC), which is an even more accurate representation than 

GMA. The usefulness of the approach was illustrated by means of solving problems 

embedding SC models that standard global optimizers failed to solve efficiently. 

Another strategy to further extend these frameworks consists of incorporating more 

objectives into the associated problems formulations. For instance, biotechnology studies 

typically seek optimizing a single flux in the metabolic network as unique criterion. In 

practice, however, there are other criteria of interest for experimentalists, such as 

minimizing the number of enzymatic changes, metabolic concentration of intermediates 

or transient times. The incorporation of these functional criteria as constraints ensuring 

cell viability does not allow for the identification of solutions in which cell viability is 

further improved at the expense of marginal reductions in other objectives, which is 

something than can only be achieved via multi-objective optimization (MOO). For this, 

we developed in [5] a global optimization framework capable of efficiently dealing with 

several biological criteria simultaneously. The proposed strategy makes use of a heuristic 

approach based on the epsilon constraint method that reduces the computational burden 

of generating a set of Pareto optimal alternatives. Furthermore, with the aim of 

facilitating the post-optimal analysis of these solutions and narrow down their number 

prior to being tested in the laboratory, we implemented two Pareto filters that 

systematically identify the preferred subset of enzymatic profiles. The usefulness of our 

approach was demonstrated by means of a case study that optimizes the ethanol 

production in the fermentation of Saccharomyces cerevisiae considering 14 different 

objectives. 

One of the main advantages of optimization techniques is that they are versatile tools 

that can be applied to problems arising in different areas. In this thesis [6], we also 

discuss an application of mathematical programming to the life cycle assessment (LCA) 

methodology. For this, we considered a supply chain management (SCM) problem in 

which the goal is to determine the set of Pareto optimal supply chain configurations that 

maximize the net present value (NPV) and minimize a set of environmental metrics. The 

multi-objective framework we proposed incorporates a heuristic approach based on 

Principal Component Analysis (PCA) that allows for uncovering hidden relationships 

between different LCA metrics. This knowledge is then use to obtain, for a similar 

computational burden, a better representation of the Pareto set through a reduction of the 

problem dimensionality. 
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1. Introduction 

This thesis introduces a set of advanced mathematical programming tools for systems 

biology, where problems of interest range from designing microorganisms with enhanced 

phenotypes to understanding the evolution of cellular metabolism. Most of the tools 

presented are based in global optimization. The document is organized as follows. The 

challenging biological problems addressed in this thesis are briefly presented in section 2. 

The following section (section 3) provides a general background on mathematical 

programming and some of the techniques used in this thesis. Then, in section 4, we 

discuss how these techniques can be used to tackle the problems introduced in section 2, 

whereas in section 5, we illustrate the capabilities of these approaches as applied to 

similar problems. Finally, the conclusions of the work are drawn and future research lines 

that could extend the framework proposed herein are outlined. 

1.1. Objectives of the thesis 

The objectives of this thesis are: 

• Devise a systematic framework for the global optimization of metabolic 

networks described by the Generalized Mass Action (GMA) formalism. 

• Extend this framework so as to solve to global optimality other types of kinetic 

models (i.e., Saturable and Cooperative systems).  

• Develop a systematic framework for characterizing the feasible space of a 

biological optimization problem taking as a basis the strategy proposed by 

Sorribas and Guillén-Gosálbez [7]. 

• Use this framework to identify the best combination of constraints and 

objective function that shapes a prescribed adaptive process. 

• Propose a multi-objective optimization (MOO) framework for metabolic 

engineering. 

2. Systems biology 

The study of complex biological systems requires the integration of experimental and 

computational research by adopting a systems biology approach. Systems biology studies 

the interactions between the individual components of a biological system and how they 

determine the function and behavior of this system. Here, computational biology plays a 

major role by developing mathematical tools that aim to provide a powerful foundation 

from which to address critical scientific questions. In particular, the optimization of 

metabolic networks has emerged as a very important goal in biotechnology [8-12]. In 

addition, these techniques can also help in understanding the evolution of cellular 

metabolism under different conditions [7]. We review next the main topics studied in this 

thesis 
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2.1. Metabolic engineering (papers [1,2], also papers [3,4,5]) 

In recent years, the use of genetic manipulation techniques has led to significant 

improvements in the production of certain biochemical products. However, in most cases 

mutation and selection of new processes has been made in a trial-and-error basis [13], 

which leads to sub-optimal solutions. As actual biological processes are operating far 

from their (mathematical) global optimum, one expects that they could be further 

improved if quantitative design principles for gene modification were provided by a more 

rational approach like optimization. This optimization is known as engineering design 

and consists of, given a model, finding the appropriate changes in the enzyme activities 

that optimize (maximize) a certain objective function (typically, the synthesis rate of the 

desired product). The enzyme activities obtained in the optimization can be reproduced in 

the real system by genetically modifying the expression of the associated genes.  

2.2. Evolution studies (paper [3]) 

While in optimization scientists establish the objective and search the way to 

accomplish it, in natural systems, the emergence of new designs results from the 

evolution driven by natural selection [14-17]. Physiological constraints force cellular 

mechanisms to modify the expression of their genes and their enzyme activities. The 

observed response should be an optimal (according to some criterion) assuring survival in 

a range of conditions [18-19]. Thus, while one can argue that natural systems are 

optimized by natural selection, it is not so clear which is the objective function in which 

this optimization is based or how close/far is this hypothetical optimum from the 

theoretical one that would result from a mathematical optimization. Determining these 

design principles can be posed as a reverse optimization problem, that is, we know the 

actual solution (the actual system) but we do not know which is the criterion (if any) 

optimized by this solution. Additionally, since the response has to fulfill some 

requirements, evolution may be even more closely related to feasibility than to 

optimization itself. Thus, a more complete statement would be that the adaptation of 

cellular metabolism consists of an optimal (in some sense) response that accomplishes a 

set of physiological constraints. These particular features of the evolution studies prevent 

standard global optimization tools from being directly applied to them. Hence, there is a 

need to customize such tools so they can deal with the associated problem complexity of 

the problem. 

UNIVERSITAT ROVIRA I VIRGILI 
GLOBAL OPTIMIZATION APPLIED TO KINETICMODELS OF METABOLIC NETWORKS 
Carlos Pozo Fernández 
Dipòsit Legal: T.1469-2012 
 



3 

3. Mathematical programming: optimization 

Although optimization started as a methodology of academic interest, it has become a 

useful technology that makes significant impact in various areas, including industrial 

applications [20]. In mathematical programming, optimization problems are generally 

posed as minimizations: 

( )
Zyx

yxg

yxhts

fSOO

∈ℜ∈
≤
=

,

0,

0),(..

min 1

 

Optimization problems as SOO are composed of different parts. On the one hand, the 

objective function f1 can be understood as the performance index of a given solution. 

Feasible alternatives (the set of which is sometimes referred to as search space or solution 

space) are defined by the constraints in the problem. In particular, h(x,y) represents 

equality constraints whereas g(x,y) refers to inequality constraint. Regarding the decision 

variables, these can either be continuous (denoted by x) or integer (represented by y). 

Note that widely-used binary variables are a particular case of the more general integer 

ones. 

The nature of an optimization problem is given by the particular combination of 

variables and equations it embeds. As a result, one may face linear programming 

problems (LP, continuous variables and linear equations), non-linear programming 

problems (NLP, continuous variables and one or more non-linear equations), mixed-

integer linear programming problems (MILP, continuous and integer variables, and linear 

equations) and mixed-integer non-linear programming problems (MINLP, continuous and 

integer variables, and at least one non-linear equation) among others. Special distinction 

needs to be made regarding whether the NLP is convex or not, as this second case may 

give rise to multiple local optimal solutions (i.e., multimodality). The existence of 

multiple sub-optima is a handicap when addressing these problems as standard algorithms 

may get trapped in them during the search, reporting a solution far from the global one. 

An optimization problem is said to be convex when its objective function and its 

feasible space are both convex. A feasible space is convex if and only if the inequality 

constraints are convex and the equality constraints are affine (i.e., linear). In a convex 

search space, any linear combination of two points of the feasible space leads to a point 

belonging to the same space, whereas in a non-convex one, it does not (Figure 1). Note 

that according to this definition any problem involving integer variables is non-convex, 

since its solution space is defined by disjoint regions. In practice, however, MINLP 

formulations are in general referred to as non-convex only when the NLP resulting from 

fixing the values of their integer variables is non-convex (see section 3.2 for further 

information). Similarly, MILPs are non-convex because of the presence of binary 

variables. 
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C

 

S

 

Figure 1. Example of a convex space C and a non-convex space S. 

3.1. Global optimization 

Deterministic global optimization strategies are the only ones that can ensure 

convergence to the global optimum of a non-convex problem within a desired tolerance 

in a finite number of iterations. Some of these methods have been implemented in 

software applications (for instance, a spatial branch and reduce algorithm  is implemented 

in BARON, the state-of-art global optimization solver).  

Here, we should distinguish between stochastic and deterministic approaches. 

Stochastic methods rely on meta-heuristics in order to guide the search for “good” 

solutions from a series of pseudorandom generated points. These methods are often based 

on physical and biological analogies and are capable of obtaining near optimal solutions 

in low CPU times, yet they offer no guarantee of global optimality for these solutions. On 

the other hand, as already mentioned, deterministic methods are rigorous and, thus, can 

guarantee global optimality within a desired optimality gap. These methods are based on 

calculating valid lower and upper bounds on the global optimum of the problem that are 

gradually tightened until a desired optimality criterion is satisfied. The main drawback of 

such strategies is that they require a large number of iterations to converge, and 

sometimes, even after large CPU times, they cannot close the optimality gap (defined as 

the absolute value of the relative difference between the upper and the lower bounds) 

bellow certain limits [21]. The search for the global optimum can be expedited by 

exploiting the mathematical properties of the specific problem. Hence, there is still room 

for improvement in this area by devising customized algorithms for specific applications. 

In this thesis, we have developed efficient deterministic global optimization techniques 

for non-convex NLPs and MINLPs arising in metabolic engineering studies. From now 

on, we will refer to deterministic global optimization simply as global optimization. 

3.2. Relaxations in global optimization 

One key feature of any global optimization algorithm is its capability of predicting 

valid lower bounds on the global optimum. This is usually accomplished by solving a so-

called relaxation. A relaxation is an auxiliary problem obtained with an objective function 

that underestimates the original one and a search space that contains that of the original 

problem. Because of these two properties, the relaved problem provides a rigorous lower 

bound on the global optimum.  
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The objective of a global optimization algorithm is to approach the lower and upper 

bounds it produces to the globally optimal solution. In the case of the lower bound, this 

can only be accomplished by means of tight relaxations. Hence, in this thesis we studied 

how to obtain tight relaxations for the problems of interest. 

3.3. Degeneracy 

Different solutions in multimodal problems do not necessary map into different 

objective function values. When this happens, that is, when different designs lead to the 

same objective function value, we say that the problem is degenerated. Accounting for 

degeneracy is of paramount importance for many applications, since different design may 

be associated with different practical implications that may make one solution 

particularly appealing among the others. 

in this thesis, we worked on an iterative process to describe the feasible space of a 

model that can be used for studying degenerated problems. First, a grid is defined for 

each of the variables of interest and a binary variable is associated to each hyper-

rectangle resulting from the intersection of the different grids. Next, the problem is 

optimized to obtain a given solution, which is allocated in a specific hyper-rectangle 

(note that the value of the binary variables defined before allows to identify the region in 

which that solution is located). Then, an integer cut, which is a special type of constraint, 

is added to the problem formulation to exclude from the search the hyper-rectangles 

found in previous iterations. The procedure is repeated again, and subsequent integer cuts 

are added until a predefined stop criterion is satisfied. The explanation of this algorithm is 

given in more detail in section Feasibility approach in [7] and in section 3.2 in [3]. 

3.4. Multi-objective optimization 

Sometimes it might be interesting to evaluate alternatives considering more than one 

criterion. This can be accomplished by appending additional objectives to the problem 

formulation and by solving the resulting multi-objective optimization (MOO) problem: 

{ }
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,...,min 1
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Recall that the difference between problem MOO and problem SOO relies on the 

objective function. In particular, in problem SOO, f1 can be regarded as a single objective 

function whereas in problem MOO, F is a vector containing a set of B objectives ranging 

from f1 to fB. 

The vector containing the individual minimum of all the objectives is regarded as the 

utopia point. This point is in general unattainable due to the trade-off existing between 

the different objectives. As a result, the solution to this kind of problems is usually 

composed by a set of points instead of a single one. These points are known as Pareto 

optimal solutions and form the so-called Pareto frontier. A solution is said to be Pareto 

optimal when it is not possible to improve one of the objectives without worsening any of 
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the others. For this reason, points in a given Pareto set are all considered to be equally 

optimal (see [22] for further information). 

Many different methods, stochastic and deterministic, have been devised for obtaining 

Pareto optimal solutions in MOO problems. Here, we are only interested in the 

deterministic methods, which are the only ones that offer a theoretical guarantee of 

optimality in their solutions. In particular, the most popular deterministic MOO strategies 

are the weighted sum and the epsilon constraint method. The former method suffers from 

a well-reported inability to obtain non-convex parts of the Pareto frontier, which has 

motivated abandoning any further analysis on this alternative in this thesis (see [22] for a 

description of this method). The epsilon constraint does not show this limitation, and for 

this reason has been adopted in this woirk. 

3.4.1. Epsilon constraint 

In this method, one objective (main objective) is left as the only objective function of 

the problem, whereas the rest of the objectives (secondary objectives) are transferred to 

auxiliary constraints that impose bounds ε on them: 

( )
{ }1,0,

0,
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,...,1,...,2..

min 1
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The values of the epsilon parameters are obtained by first optimizing each objective 

individually and then splitting the interval defined by the best ( bf ) and worst ( bf ) values 

obtained for each objective in this optimization, into a set of subintervals (see section 

Multiobjective global optimization of metabolic networks described by a GMA Model in 

[5] for further details of the procedure).  

One important feature of the epsilon constraint method is that it transforms a MOO 

problem into a set of single-objective problems, which can be solved by means of any 

global optimization method, if required. The number of instances of problem EC that 

must solved is given by all possible combination of epsilon parameters (i.e., N
B
)). With 

the aim of alleviating the computational burden, some authors [5] have proposed an 

alternative procedure in which only all bi-objective combinations are solved, which leads 

to N
B









2
 instances.  

3.4.2. Challenges in MOO 

There are some well-reported difficulties which are intrinsic to MOO problems. For 

instance, even if the Pareto frontier can be computed, it would in general contain an 

infinite number of points for continuous problems, which inherently implies a big 

computational burden to deal with. Furthermore, visualization of the Pareto set becomes a 
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difficult task especially in problems with more than 3 objectives, which hampers the 

subsequent decision-making process [23].  

Research efforts have been made for alleviating these difficulties. On the one hand, 

some authors have attempted to reduce the dimensionality of the problem by identifying  

redundant objectives that can be left out of the analysis. Some of these methods have 

been reviewed elsewhere [6]. On the other hand, other authors have developed strategies 

to produce only certain parts of the Pareto frontier, thereby reducing the number of 

solutions and facilitating the decision making procedure. This issue is further discussed in 

section Pareto filters in [5]. In this thesis work, we have integrated these methods into a 

complete MOO framework to tackle multi-objective metabolic engineering problems (see 

[5,6]). 

4. Application of optimization to systems biology problems 

The use of mathematical optimization to improve biotechnological processes has the 

potential to produce significant economical savings . This is due to the reduction in the 

number of experiments required to improve the performance of the microorganisms and 

obtain higher yields. Additionally, the solutions of the optimization procedure can 

provide valuable insight on the behavior of the biological systems, thereby enhancing our 

understanding of cellular metabolism. 

One of the key steps in this approach is the selection of the appropriate mathematical 

model among the different representations available. Although we can distinguish 

between different types of models (see for instance section 1 in [1] for further 

discussion), kinetic models based on the so-called power-law formalism show a good 

compromise between accuracy and simplicity. Among them, we find the S-System and 

General Mass Action (GMA) representations, which seem a promising alternative in the 

area. The main advantage of these models is that they can capture the non-linearities 

required to describe the regulatory processes of the networks while still showing some 

linear properties in the logarithmic space (i.e., when logarithms are taken in the power-

law equations). 

GMA models only differ from S-System models in the way in which the branching 

points are handled. In S-System models all the input flows in the branching point are 

collected and modeled together as if they were a single flow. The same procedure is 

followed for the outputs so that, finally, the concentration of the metabolite being 

balanced is the result of just two contributions. On the other hand, in GMA models each 

process is approximated separately so that there are as many contributions as actual flows 

in the real system. In particular, the GMA mathematical representation of a metabolic 

network containing n internal metabolites whose concentration varies due to the action of 

p flows can be expressed as follows: 

niXK
dt

dX p
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where µir is the stoichiometric coefficient of metabolite i in process r, Kr is the fold-

change produced over the basal-state enzyme activity γr, Xj corresponds to the 

UNIVERSITAT ROVIRA I VIRGILI 
GLOBAL OPTIMIZATION APPLIED TO KINETICMODELS OF METABOLIC NETWORKS 
Carlos Pozo Fernández 
Dipòsit Legal: T.1469-2012 
 



8 

concentration of metabolite j and frj is the kinetic order of metabolite Xj in process r, and 

quantifies its effect on the considered rate. Note that contributions of the m (independent) 

external metabolites are also accounted for in this representation. The reader is referred to 

section 3.1 in [1] and section 3 in [2] for a more detailed development of this expression. 

4.1. Metabolic engineering with GMA models 

The identification of the enzymatic profile leading to an enhanced phenotype in a 

given microorganism can be obtained by solving an optimization problem where the 

maximum flux or yield is sought, subject to the equations describing the microorganisms’ 

metabolism.  
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Here FP is the set of metabolites i that are final products and FPi is the set of 

processes r contributing to the production of metabolite i. Equality and inequality 

constraints (h(Kr,Xjfrj,y) and g(Kr,Xjfrj,y), respectively) may be used to impose bounds on 

metabolites concentrations, enzymatic changes and the number of enzymes that can be 

modified simultaneously, among other things. Continuous variables denote metabolite 

concentrations and fold-changes in enzyme activities, whereas binary variables represent 

the number of enzymatic modulations simultaneously allowed. A detailed description of 

different variations of this model can be found in section 3.2 in [1] and section 3 in [2]. 

Recall that if all the enzymes can be modified at will, then problem GMAO leads to a 

non-convex NLP since binary variables are dropped from the formulation. 

Regardless of the particular instance addressed, the complexity of this MINLP (or 

NLP) formulation that embeds a GMA model stems from the non-convexities introduced 

by the sigmoidal terms of the power-law formalism. The resulting (non-convex) MINLP 

problem may contain multiple local optima where standard optimization packages may 

converge during the search. In contrast, deterministic global optimization methods ensure 

convergence to the global optimum within a desired tolerance in a finite number of 

iterations. In particular, we have devised two global optimization algorithms for these 

problems: an outer approximation (OA, see section 4 in [1]) and a spatial branch-and-

bound (sBB, refer to section 4 in [2]). The first one, which is based on the works by 

Polisetty [14] and Bergamini [24], has been used to maximize the ethanol synthesis rate 

in Saccharomyces cerevisiae and the citric acid production in Aspergillus niger (section 5 

in [1]) whereas the later has also been used for the citric acid optimization in Aspergillus 

niger (section 5 in [2]). Furthermore, the performance of both algorithms has also been 

compared to that of BARON in [2] (see sections 5 and 6). 
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4.2. Metabolic engineering with other kinetic models 

In some metabolic networks, it mat be necessary to adopt representations others than 

the GMA formalism in order to reproduce the network’s behavior precisely. These new 

models are likely to be more complex than the GMA formalism. Hence,, in such cases, it 

may be convenient to resort to recasting, a technique which transforms the non-linear 

model with an arbitrary form into a canonical GMA model [25,26]. Through this 

technique, which requires definition of additional variables, arbitrary non-linear models 

can be represented using canonical forms such as GMA or S-system which are 

mathematically less demanding and hence can be used for simulation and optimization 

purposes. This opens the door for effectively extending any optimization tool originally 

devised for GMA models to other more detailed kinetic models. In particular, recasting is 

immediate for a specific type of model known as Saturable and Cooperative (SC). This 

formalism, which was proposed by Sorribas et al. [27], extends the power-law 

representation used in GMA models to account for cooperativity and saturation, which 

leads to more accurate predictions over a wider range of conditions than both the S-

System and GMA representations. 

The SC representation of a metabolic network with n internal metabolites and p flows 

is as follows: 

( )
ni

X

XK

dt

dX p

r
mn

j

f

jrj

mn

j

f

jrr

ir

i

rj

rj

,...,10
1

1

1 ==



















+
=∑

∏

∏
=

+

=

+

=

δ

γ
µ  (2) 

where δrj is a parameter that depends on the saturation fractions (refer to section 5.1 in 

[4] for further details on this issue). Recall that variable Kr, which models changes in 

enzymes activities, is also included in this expression. The main difference between this 

equation and eqn 1, that is, between the GMA model and the SC model, is given by the 

denominator in the right-hand side of eqn 2. This denominator prevents the direct 

application of the strategies devised for the global optimization of GMA models for 

optimizing SC models. Nevertheless, a variable change is enough to by-pass this 

difficulty. In particular, a new variable Zrj defined as in eqn 3 must be introduced in the 

model. 

mnjprXZ
rjf

jrjrj +==+= ,...,1,...,1δ  (3) 

With this variable change, eqn 4 becomes analogous to that of the GMA model (eqn 

1), which permits the application of the global optimization algorithm devised for GMA 

models to the SC formulation. 
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Note that eqn 3 must also be included in the final optimization problem, which can be 

finally posed as follows: 
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Model rGMA is mathematically identical to the model embedding the SC equations, 

but its structure is much more suitable for optimization purposes, as it allows the 

application of the global optimization strategies devised for GMA models. This is 

explained in more detail in [4], where some benchmark case studies considering different 

optimization goals were solved. To our knowledge, this is the first work that introduces a 

deterministic global optimization method for kinetic models other than GMA or S-

Systems. 

4.3. Multi-objective global optimization in metabolic engineering 

The design of strains with enhanced performance must be accomplished bearing in 

mind several conflicting criteria. For instance, some authors have argued that the 

minimization of metabolite concentrations should be regarded as an optimality principle 

in metabolic networks [28]. If this criterion were to be included in a traditional metabolic 

engineering optimization problem, then we would face a MOO problem. In previous 

attempts, this difficulty had been by-passed by sticking to the single-objective problem 

and simply imposing constraints to ensure cell viability. Note however that this strategy 

provides no information regarding the trade-off between objectives, and hence, may miss 

solutions in which cell viability is significantly strengthened to attain a marginal payoff in 

the final product synthesis rate. 

Although MOO contributions are abundant in the chemical engineering field, they are 

much more uncommon among the metabolic engineering community. One significant 

contribution was made by Sendín et al. [29], who posed and solved by means of different 

MOO methods a 6-objectives MOO problem with two different models (S-System and an 

ad-hoc) of the Saccharomyces cerevisae metabolic network. The objectives considered 

there were the ethanol synthesis rate and the concentration of 5 dependent metabolites. 

Most of the strategies compared therein are not suitable for problems based on GMA 

models as they either rely on local solvers or on stochastic methods which cannot offer 

any proof of global optimality (and hence, of obtaining the true Pareto front). In this 

thesis work, we have filled this gap by proposing a novel systematic framework for the 

deterministic multi-objective global optimization of metabolic networks described by the 

GMA model (work accepted in PLoS ONE [5]). In particular, a 14-objectives 

optimization problem considering the ethanol synthesis rate, the concentration of 5 

dependent metabolites and the fold-change of the activity of 8 enzymes in the 
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Saccharomyces cerevisae metabolic pathway has been solved using the epsilon constraint 

method coupled with an outer approximation algorithm. We have also explored the use of 

Pareto filters as a manner to reduce the size of the final set of candidates to be tested in 

the laboratory. The integration of these filters within a unique deterministic MOO 

framework constitutes one of the contributions of this thesis. 

4.4. Feasibility analysis in evolution studies  

The advantages of using systematic tools in evolution studies have already been 

acknowledged in the literature [13]. Nevertheless, there is still a lack of global 

optimization strategies in the area. For instance, Vilaprinyo et al. [16] studied the 

adaptation of yeast to heat shock by combining experimental data and computational 

work. Experimental observations were used to identify the physiological constraints 

regulating the problem, while brute force calculations were employed to determine 

feasible combinations of enzyme activities fulfilling these constraints. The procedure 

followed consists of choosing a set of discrete values for each of the different enzyme 

activities and then solving a system of non-linear equations
 
(note that once the enzyme 

activities’ fold-change Kr have been fixed, the degrees of freedom in the GMA model are 

0) to determine the concentration of intermediate metabolites for each of the 

combinations of enzyme activities. If the system of equations rendered infeasible, the 

combination was regarded as infeasible. The main limitation of this approach is that the 

choice of discrete values prevents the proper exploration of the feasible space of enzyme 

activities as feasibility is not checked between two consecutive values. Thus, the analysis 

is not exhaustive and hence, the conclusions drawn are not general.  

This thesis works provides a new generation of global optimization tools for evolution 

studies in systems biology. These strategies are based on those used in mathematical 

programming to deal with degenerated problems. In particular, the algorithm described in 

section 3.3 is used to characterize the feasible region defined by a set of biological 

conditions that model the adaptive process of a microorganism to a given stress. If a set 

of constraints leads to a feasible region that does not contain the experimental 

observations, then it can be discarded. The biological implications of this methodology 

are further described in section 3.4.4 in [3], whereas section 3.2 of the same publication is 

devoted to the technical details of the algorithm. 

Once a valid set of constraints has been identified, different single-objective 

optimization problems considering alternative objective functions can be solved. The 

proximity between these theoretical optima and real observations may be an indicator of 

the driving force of these adaptive processes. To illustrate this methodology, we solved a 

complete example based on the adaptation of yeast to heat shock that can be found in [3]. 

Note that in this particular example the set of candidate constraints was retrieved from 

[16]. 

Note that the use of global optimization tools is especially important in systems 

biology studies, in which one aims to draw general conclusions from the specific 

properties of the solution found. In this context, local solutions must be avoided since 

they might hamper the whole biological analysis. 
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4.4.1. Extension of feasibility analysis for metabolic engineering problems 

The methodology described in the previous section does not require the identification 

of the global optimum of a model, since only feasibility must be checked. However, one 

could use the same methodology to characterize the region of the feasible search space 

that shows a given objective function value. This may be particularly interesting for 

metabolic engineering studies, by identifying different enzymatic profiles leading to 

similar yields. One could then choose enzymatic modifications that do not compromise 

cell survival. This strategy was presented [3], where a case study involving the ethanol 

production rate in Saccharomyces cerevisiae was included (section 3.4.2). 

5. Other applications of mathematical programming 

Optimization provides set of powerful tools intended to give answer to problems that 

otherwise would be very difficult (if not impossible) to solve. As a result, these 

techniques are applicable to many different and diverse areas. So far, we have shown how 

global optimization and related strategies can be effectively applied to address problems 

that are relevant in the context of systems biology. Next, we discuss how mathematical 

programming can be applied to other unrelated areas such as the design and planning of 

suitable processes using life cycle assessment (LCA) principles. 

Consider a supply chain management (SCM) problem in which the goal is to 

determine the set of Pareto optimal supply chain configurations that maximize the net 

present value (NPV) and minimize a set of environmental metrics (see section 3 in [6] for 

a detailed problem statement). Intuitively, one may think that there exists a trade-off 

between the economic and the environmental objectives, but it is not so straight-forward 

to predict whether the environmental metrics are introducing independent or redundant 

information to the problem. To detect redundant objectives in a MOO, Deb and Saxena 

[30] proposed a heuristic method which is based on Principal Component Analysis 

(PCA). In their work, they apply stochastic MOO methods. As previously discussed, 

these methods may lead to spurious Pareto frontiers. Hence, in this thesis we overcome 

this limitation by developing a deterministic MOO algorithm that is coupled with a 

dimensionality reduction procedure (see CES [6]). This framework is complementary to 

that presented for the MOO of metabolic network (section 4.3), as it attempts to reduce 

the computational burden (but this time by reducing the number of objectives rather than 

by filtering Pareto solutions). 

6. Conclusions 

The results obtained after developing and applying the techniques presented in this 

work have provided a set of conclusions which are listed below. 

• Two systematic frameworks for the global optimization of metabolic networks 

described by the GMA representation have been developed: one based on an 

OA and another on a customized sBB. 

• Our customized algorithms show better numerical performance than other 

approaches proposed so far in the literature for the global optimization of 

metabolic networks [8]. 
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• Numerical results show that the two proposed algorithms outperform the state-

of-the-art commercial global optimization solver BARON. This is due to the 

high quality relaxations obtained by exploiting the mathematical structure of 

GMA models. 

• Although none of the customized methods (sBB and OA) proved to be superior 

in all of the cases, we observed that sBB shows better performance in the most 

complicated instances.  

• It has been shown that it is possible to solve highly non-linear kinetic models 

(like the SC formalism) efficiently by recasting them into GMA-like canonical 

forms.  

• A systematic framework for mapping the objective function surface and 

simultaneously determining the problem’s feasible region has been devised. 

This methodology can be applied to evolution studies as well as to metabolic 

engineering problems, providing valuable insights into biological systems. 

• After comparing different sets of constraints in the adaptive response of yeast 

to heat shock, we conclude that constraints proposed by Vilaprinyo et al. [10] 

are the ones which better explain the experimental observations. Besides, 

results indicate that the actual process may be driven by the minimization of 

the total enzymatic cost. In other words, it seems that cells try to minimize the 

number of metabolic changes required to survive in the new conditions. 

• Two systematic frameworks have been proposed for MOO problems. On the 

one hand, the use of PCA allows overcoming the numerical difficulties that 

arise when dealing with a large number of environmental objectives in a SCM 

problem. Results indicate that, in general, few environmental metrics suffice to 

characterize the environmental performance of a given solution. According to 

this finding, one could exclude many LCA metrics from the pool without 

compromising the quality of the Pareto structure. 

• On the other hand, the application of two Pareto filters in metabolic 

engineering can reduce the number of solutions to a large extend, thereby 

leading to a reasonable number of alternatives to be tested in the laboratory. 

This illustrates the usefulness of the proposed approach. 

7. Future work 

We next introduce a set of potential research lines related to the material presented in 

this thesis. 

• The systematic framework proposed for the multi-objective global 

optimization of GMA-described metabolic networks could be extended to 

other kinetic models by combining it with the recasting strategy. In the 

particular case of SC models, for which the recasting has already been 

reported, only linking of both methods is missing. 
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• Evolution studies could be tackled by means of a MOO approach since there 

might be no single objective driving the adaptive processes of living-cells, but 

rather a set of biological criteria. 

• The two systematic frameworks devised for MOO problems could be coupled 

into a single holistic framework. That is, after solving the MOO problem by 

means of the epsilon constraint method, the dimensionality of the problem 

could be reduced by removing redundant objectives. This would reduce the 

computational effort wasted in calculating duplicated information, and more 

diverse alternatives will be generated. Then, different Pareto filters could be 

applied in order to select a final set of candidate solutions. Furthermore, this 

strategy could be integrated with a recasting to tackle any kind of kinetic 

model. 

• We would like to apply the tools developed herein to other biological systems. 

The final goal should be to developed genome-wide models. 

• The technique employed in this thesis to relax the logarithmic function by the 

combined use of supporting hyper-planes and piecewise linear functions is 

equally valid for other monotonic decreasing/increasing functions. Hence, it 

may be interesting to compare the quality of the relaxation provided by this 

strategy with that obtained using other known relaxation techniques (for 

instance, with the McCormick’s envelopes for bilinear terms). 

• The customized algorithms presented in this thesis include a set of parameters 

which can be configured at will. For instance, in the OA and the sBB one can 

select the number of piecewise sections that are initially employed for the 

calculations. It would be interesting to seek for systematic tuning strategies for 

these parameters. 

• All the strategies presented in this thesis are valid for steady-state conditions. It 

may hence be interesting to extend the proposed methodologies to deal with 

dynamic systems. 

• The development of a software application implementing the algorithms 

developed herein is crucial for extending their use. 

8. Nomenclature 

8.1. Abbreviations 

GMA Generalized Mass Action 

LCA Life Cycle Assessment 

LP  Linear Programming 

MILP Mixed-integer Linear Programming 

MINLP Mixed-integer Non-linear Programming 

MOO Multi-objective Optimization 
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NLP Non-linear Programming 

NPV Net Present Value 

OA  Outer approximation 

PCA Principal Component Analysis 

sBB  Spatial branch-and-bound 

SC  Saturable and Cooperative 

SCM Supply Chain Management 

8.2. Indices 

b  Objective function 

i  Internal (dependent( metabolite 

j  Metabolite (can either be internal o external) 

n  Epsilon constraint subinterval 

r  Process (flux) in a metabolic network 

8.3. Sets/Subsets 

FP   Set of metabolites i that are final products 

FPi   Set of processes r contributing to the production of metabolite i 

8.4. Parameters 

δrj  Characteristic SC parameter that depends on the saturation fraction of 

metabolite j in process r 

εb
n  Epsilon parameter for subinterval n on objective b 

γr  Basal-state activity of enzyme governing process r 

µir   Stoichiometric coefficient of the metabolite i in process r 

B  Total number of objectives 

bf    Lower bound on objective fb 

bf   Upper bound on objective fb 

frj   Kinetic order of metabolite Xj in process r 

m   Number of external (independent) metabolites 

n  Number of internal (dependent) metabolites 

N  Total number of epsilon subintervals 

8.5. Variables 

fb  Individual objective function 
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F  Vector of objectives functions 

Kr   Fold-change produced over the basal-state enzyme activity γr 

x  Generic continuous variable 

Xj  Concentration of metabolite j 

y  Generic binary variable 

Zrj  Continuous variable introduced to recast SC models into GMA models 
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Optimization methods play a central role in systems biology studies as they can help in identifying key
processes that can be experimentally changed so that specific biological goals can be attained. Standard
optimization methods used in this field rely on simplified linear models that may fail in capturing the
underlying complexity of the target metabolic network. Within this general context, we present a novel
approach to globally optimize metabolic networks. The approach presented relies on (1) adopting a gen-
eral modeling framework for metabolic networks: the Generalized Mass Action (GMA) representation;
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egal: T.1469-2012 
lobal optimization
eneralized Mass Action (GMA)
etabolic engineering

(2) posing the optimization task as a non-convex nonlinear programming (NLP) problem; and (3) devising
an efficient solution method for globally optimizing the resulting NLP that embeds a GMA model of the
metabolic network. The capabilities of our method are illustrated through two case studies: the anaerobic
fermentation pathway in Saccharomyces cerevisiae and the citric acid production using Aspergillus niger.
Numerical results show that the method presented provides near optimal solutions in low CPU times

comm
even in cases where the
gap.

. Introduction

The study of complex biological systems requires the integration
f experimental and computational research by adopting a systems
iology approach. Systems biology addresses the study of the inter-
ctions between the individual components of a biological system
hrough the integration of data and mathematical models. Here,
omputational biology plays a major role by developing mathemat-
cal tools that aim to provide a powerful foundation from which to
ddress critical scientific questions. In particular, the optimization
f metabolic networks has emerged as a very important goal in
iotechnology (Bailey, Birnbaum, Galazzo, Khosla, & Shanks, 1990;
anga, 2008; Cameron & Chaplen, 1997; Cameron & Tong, 1993;
endes & Kell, 1996; Torres & Voit, 2002).
In recent years, the use of genetic manipulation techniques has

ed to significant improvements in the production of certain bio-
hemical products. However, in most cases mutation and selection
f new processes have been made in a trial-and-error basis, which

as led to local optimal solutions. Hence, one expects that actual
iological processes could be further improved if quantitative
esign principles for the modification of the genes were provided by
more rational approach like optimization (Banga, 2008; Chang &

∗ Corresponding author.
E-mail address: Gonzalo.Guillen@urv.cat (G. Guillén-Gosálbez).

098-1354/$ – see front matter © 2010 Elsevier Ltd. All rights reserved.
oi:10.1016/j.compchemeng.2010.03.001
ercial global optimization package BARON fails to close the optimality

© 2010 Elsevier Ltd. All rights reserved.

Sahinidis, 2005; Hatzimanikatis, Floudas, & Bailey, 1996; Polisetty,
Gatzke, & Voit, 2008; Vera, de Atauri, Cascante, & Torres, 2003; Voit,
1992). This optimization is known as metabolic engineering (Bailey
et al., 1990; Bailey, 1991, 1999) and consists of, given a model, find-
ing the appropriate changes in the enzyme activities that optimize
(maximize) a certain objective function (typically, the synthesis
rate of the desired product). The enzyme activities obtained in the
optimization solution can be implemented in the real system by
tuning the expressions of the corresponding genes.

The use of mathematical optimization to improve biotechnolog-
ical processes is nowadays gaining wider acceptance given their
potential to produce significant economical savings. These may
be achieved by reducing the number of experiments required to
find those microorganisms that lead to higher yields. Furthermore,
as manipulation of many enzymes at once may be prohibitive, a
theoretical analysis on the more promising alternative combina-
tions of limited changes is of great practical interest. Additionally,
the solutions of the optimization procedure can provide valuable
insights on the behavior of the biological systems, making these
techniques useful in other applications such as evolution studies
(Guillén-Gosálbez & Sorribas, 2009).
One of the key steps in this approach is the selection of the
appropriate mathematical model among the different represen-
tations available. Here, we can distinguish between three main
groups of models. The first group corresponds to stoichiometric
models. These models constitute simple linear representations of

19
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he stoichiometry of the network (i.e. network structure). However,
heir simplicity becomes at the same time their main limitation
s they fail to capture the non-linear behavior of some key pro-
esses of the networks such as regulation (Gavalas, 1968; Heinrich
Schuster, 1996). On the other extreme of accuracy, we would find

d hoc models. These models rely on the formulation of detailed
inetics equations, such as Michaelis–Menten, that allow account-
ng for modulating effects. Unfortunately, optimizing these systems
s not a straightforward task as it usually leads to complex math-
matical formulations (Polisetty et al., 2008). A third group of
odels includes representations that result from the combination

f linear stoichiometric descriptions and non-linear approximate
epresentations to express the velocities of the metabolic reac-
ions (Alves, Vilaprinyo, Hernàndez-Bermejo, & Sorribas, 2009;
orribas, Hernndez-Bermejo, Vilaprinyo, & Alves, 2007). Among
hem, models using the so called power-law formalism show a good
ompromise between accuracy and simplicity (Marin-Sanguino,
oit, Gonzalez-Alzon, & Torres, 2007). This group includes the S-
ystem and the General Mass Action (GMA) models, which seem
promising alternative in the area (Voit, 1992, 2003). The main

dvantage of these models is that they can capture the non-
inearities required to describe the regulatory processes of the
etworks while showing linear properties in the logarithmic space.
dditionally, these models constitute a very general framework
ince any kind of metabolic network can be represented through
heir formulations (Alves et al., 2009).

GMA models only differ from S-System models in the way
n which the branching points are handled (Curto, Sorribas, &
ascante, 1995). In S-System models, all the input flows in the
ranching point are collected and modeled together as if they were
single flow. The same procedure is followed for the outputs so

hat, finally, the concentration of the metabolite being balanced is
he result of just two contributions. On the other hand, in GMA

odels each process is approximated separately so that there are
s many contributions as actual flows in the real system (Voit, 2000
nd references therein). If the metabolic network only contains
odes that result from the contribution of an input flow and an
utput flow, the S-System and GMA representation coincide.

Models based on the power-law formalism were first used in
etabolic optimization problems by Voit (1992). The choice of

n S-Systems representation allowed him to obtain a linear rep-
esentation by a simple logarithmic transformation performed on
ome variables of the model (Alvarez-Vasquez, Canovas, Iborra, &
orres, 2002; Marin-Sanguino & Torres, 2003; Marin-Sanguino et
l., 2007; Vecchietti, Sangbum, & Grossmann, 2003). However, this
s not possible in GMA models, since some equations cannot be
irectly reformulated using the logarithmic transformation. The
ptimization task then gives rise to a non-convex NLP that may
how multiple local optima in which standard commercial pack-
ges can get trapped during the search.

In the context of performing a systems biology study, global
ptimality is particularly important, as one aims to draw gen-
ral conclusions from the specific properties of the solution found.
ence, local solutions should be avoided, since they might ham-
er the entire biological analysis by providing insights that are not
eaningful at all. A literature review in the area of global optimiza-

ion of metabolic networks (Banga, 2008) reveals that this is indeed
ripe field for research. In a recent and pioneering work Polisetty

t al. (2008) addressed the global optimization of GMA models (see
lso Marin-Sanguino et al., 2007; Marin-Sanguino & Torres, 2003).
he main drawback of the strategy presented by Polisetty et al.
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2008) is that it provides solutions with large optimality gaps (i.e.,
arge differences between the best solution that could be found and
he one calculated during the execution of the algorithm). More
ecently Guillén-Gosálbez and Sorribas (2009) presented a novel
lgorithm that makes use of global optimization techniques for per-
ngineering 34 (2010) 1719–1730

forming feasibility analysis in evolution studies. The tool developed
by these authors allowed characterizing the feasible space of opti-
mization problems with embedded GMA models (Sorribas et al.,
2010).

The aim of this work is to provide a systematic modeling frame-
work and solution strategy for metabolic optimization problems
arising in systems biology studies. The approach presented relies
on posing the optimization task as a NLP with an embedded
GMA model of the metabolic network under study. An outer-
approximation algorithm is presented to solve this type of models
to global optimality. We provide a theoretical analysis on some
details of the algorithm and illustrate its capabilities through two
examples, comparing our results with those produced by BARON,
nowadays regarded as the “state of the art” global optimization
package.

2. Problem statement

Given a metabolic network described by a GMA model, the opti-
mization aims to determine the appropriate changes in enzyme
activities and in the internal metabolite concentrations so that
the synthesis rate of the desired product is maximized in steady
state. Given data for the problem are: (1) the stoichiometry of the
reactions involved in the production/consumption of each inter-
nal metabolite in the metabolic network; and (2) the value of the
parameters of the power-law formalism representing the kinetics
of each of these particular reactions at the basal state.

3. Mathematical formulation

3.1. GMA representation

The GMA representation of a metabolic network containing n
internal metabolites whose concentration Xi can vary with the time
t due to the action of p flows can be expressed as follows:

dXi

dt
=

p∑
r=1

�irvr i = 1, . . . , n (1)

where �ir is the stoichiometric coefficient of the metabolite i in
the process r and indicates the number of molecules of metabolite
i involved in such a process. Hence, it is always an integer value
that is positive when process r contributes to the production of
metabolite i, negative when process r consumes metabolite i and
0 otherwise (i.e., if process r does not participate in the produc-
tion/consumption of metabolite i). The velocity vr can be described
using different representations, but, as stated previously, the so-
called power-law formalism (Savageau, 1969a,b; Voit, 2000) is an
appropriate one:

vr = �r

n+m∏
j=1

Xfrj
j r = 1, . . . , p (2)

In this representation, �r is an apparent rate constant for flow
r. frj is the kinetic order of metabolite j in process r and quantifies
its effect on the considered rate. Note that contributions of the m
(independent) external metabolites are also accounted for in this
representation.

By introducing Eq. (2) into Eq. (1) and assuming steady state

RKS 
conditions for the network, one obtains a GMA model as follows:

dXi

dt
=

p∑
r=1

⎛
⎝�ir�r

n+m∏
j=1

Xfrj
j

⎞
⎠ = 0 i = 1, . . . , n (3)
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.2. NLP formulation

In order to compute the changes in the enzyme activities, we
hall rewrite the apparent rate constant �r in Eq. (3) as a product
f the basal state enzyme activity �r (constant parameter) and its
old-change Kr (continuous variable):

p

r=1

⎛
⎝�irKr�r

n+m∏
j=1

Xfrj
j

⎞
⎠ = 0 i = 1, . . . , n (4)

The final goal of the optimization task is to find the appropriate
hanges to be performed in the enzyme activities in order to opti-
ize a given biological criteria (typically a flow) described through

lgebraic equations. This requires the determination of the optimal
alues of Kr, vr and Xj that maximize/minimize the given objective
unction while fulfilling the GMA model equations in steady state. In
eneral, it will be possible to express the desired criterion in math-
matical terms using a specific mathematical function U(Kr, vr , Xj),
o that the optimization task can be posed as a non-linear program-
ing problem (NLP) of the following form:

(ONLP) min U(Kr, vr , Xj)

s.t.

p∑
r=1

�irvr = 0 i = 1, . . . , n

vr = Kr�r

n+m∏
j=1

Xfrj
j r = 1, . . . , p

Kr, vr , Xj ∈R+

ote that maximization problems can be easily reformulated into
inimization ones by changing the sign of the objective function.

he nonlinear equality constraints that define the velocity terms in
NLP give rise to a non-convex search space. Hence, to solve ONLP

o global optimality, it is necessary to resort to global optimization
echniques (see Grossmann & Bigler, 2004; Floudas & Gounaris,
009) that can provide solutions to the problem with a desired
ptimality tolerance. These methods can handle a wide variety
f non-convex formulations arising in many types of applications.
nfortunately, in practice, their numerical performance may vary
rastically depending on the specific problem being solved, leading

n some cases to prohibitive CPU times (Grossmann & Bigler, 2004).
possible way to overcome this limitation consists of devising cus-

omized algorithms that exploit the mathematical properties of the
pecific problem under study. This is indeed the underlying idea of
ur approach.

. Solution strategy

The method we propose to globally optimize ONLP is an outer-
pproximation algorithm based on the works of Bergamini, Aguirre,
nd Grossmann (2005) and Polisetty et al. (2008). Our method relies
n decomposing the original problem ONLP into two problems at
ifferent hierarchical levels: an upper level master problem CMILP
nd a lower level slave problem RNLP. The master level entails the
olution of a mixed-integer linear programming (MILP) problem

AT ROVIRA I VIRGILI 
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zo Fernández 
egal: T.1469-2012 
hat is a relaxation of ONLP. This implies that CMILP will predict
alid lower bounds on the solution of ONLP (the solution of the
elaxation will be, at least, as good as that of the original problem).
n the lower level, the original problem is locally optimized in a
educed search space (RNLP) providing a valid upper bound on its
lobal optimum. These two problems are solved iteratively until
he optimality gap is reduced below a given tolerance. A detailed
escription of the algorithm is given in the following sections.
Fig. 1. Natural logarithm overestimation by a 1st degree Taylor series.

4.1. Upper level master problem

To construct a valid relaxation of ONLP (i.e., CMILP), we first
reformulate the equations arising from the power-law formalism
via a logarithmic transformation:

ln vr = ln Kr + ln �r +
n+m∑
j=1

frj ln Xj r = 1, . . . , p (5)

We then introduce two new auxiliary variables, kr and xj , which
are defined as follows:

kr = ln Kr

xj = ln Xj

By replacing the original variables in Eq. (5) by the reformulated
ones, the following equality can be obtained.

ln vr = kr + ln �r +
n+m∑
j=1

frjxj r = 1, . . . , p (6)

Eq. (6) can then be expressed via the following inequalities:

ln vr ≥ kr + ln �r +
n+m∑
j=1

frjxj r = 1, . . . , p (7)

ln vr ≤ kr + ln �r +
n+m∑
j=1

frjxj r = 1, . . . , p (8)

The logarithmic terms appearing in the left-hand side of these
equations can be replaced by valid upper and lower estimators
(note that �r is a known model parameter). Specifically, in Eq.
(7), the logarithmic function can be approximated by L supporting
hyper-planes (see Fig. 1), which are first order Taylor expansions
of the natural logarithm at different points l of the domain of vr:

ln vl
r + 1

vl
r

(vr − vl
r) ≥ kr + ln �r +

n+m∑
j=1

frjxj r = 1, . . . , p

l = 1, . . . , L (9)

Since the logarithmic function is concave, these hyper-planes con-

stitute valid overestimators that do not chop off any feasible
solution of ONLP.

Furthermore, the left-hand side of Eq. (8) can be underesti-
mated by a piecewise linear approximation. For that, we consider
a partition of the original domain [vr , vr] defined by a set of grid
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equations with only two terms, the logarithmic transformation is
enough to obtain a linear constraint (note that the stoichiometric
coefficients �ir are known). Hence, in mathematical terms, we

UNIVERSITAT ROVIRA I VIRGILI 
GLOBAL OPTIMIZATION APPLIED TO KINETICMODELS OF METABOLIC NETWO
Carlos Pozo Fernández 
Dipòsit Legal: T.1469-2012 
 

ig. 2. Example of natural logarithm underestimation by piecewise linear functions.

oints v1
r , v2

r , . . . , vH+1
r , being v1

r = vr , vH+1
r = vr and vh+1

r ≥ vh
r for

= 1, . . . , H. The piecewise linear approximation can then be mod-
led via a disjunction with H terms as follows:

∨
=1,...,H

⎡
⎢⎢⎢⎣

Yh
r

vh
r ≤ vr ≤ vh+1

r

ah
r vr + bh

r ≤ kr + ln �r +
n+m∑
j=1

frjxj

⎤
⎥⎥⎥⎦ r = 1, . . . , p

h
r ∈ {True, False} r = 1, . . . p h = 1, . . . , H

here ah
r and bh

r are the coefficients of the straight line equation in
he hth interval and Yh

r indicates whether the hth term in the disjunc-
ion of the rth velocity is active or not. Fig. 2 shows and illustrative
xample of a piecewise function with three terms.

The disjunction can be reformulated using either the big-M or
onvex hull reformulations (see Vecchietti et al., 2003). The latter
echnique allows translating the disjunction into a set of equal-
ties and inequalities using auxiliary (disaggregated) variables as
ollows:
H

h=1

zh
r = vr r = 1, . . . , p (10)

h
r yh

r ≤ zh
r ≤ vh+1

r yh
r r = 1, . . . , p h = 1, . . . , H (11)

H

h=1

yh
r = 1 r = 1, . . . , p (12)

H

h=1

(
ah

r zh
r + bh

r yh
r

)
≤ kr + ln �r +

n+m∑
j=1

frjxj r = 1, ..., p (13)

here zh
r is the new disaggregated variable and yh

r is a new binary
ariable that takes a value of 1 if the hth interval of the rth velocity
s active and 0 otherwise. Thus, the overall master problem can be
nally expressed as follows:

(CMILP) min U(kr, xj, vr , zh
r , yh

r )
s.t. constraints 1, 9, 10 to 13

kr, xj ∈R
vr , zh

r ∈R+

yh

r ∈ {0, 1}
Model CMILP takes the form of a mixed-integer linear program-

ing (MILP) problem. These problems can be solved efficiently via
tandard branch & bound (B&B) techniques.
ngineering 34 (2010) 1719–1730

4.2. Lower level slave problem

The slave problem in the lower level of the algorithm, RNLP, is
obtained by tightening the search space of ONLP. This is accom-
plished by adding lower and upper bounds on the velocity terms
vr . The associated mathematical formulation is as follows:

(RNLP) min U(Kr, vr , Xj)

s.t.

p∑
r=1

�irvr = 0 i = 1, . . . , n

vr = Kr�r

n+m∏
j=1

Xfrj
j r = 1, . . . , p

vr ≤ vr ≤ vr r = 1, . . . , p
Kr, vr , Xj ∈R+

Hence, the search space of RNLP is tighter than that of ONLP. For
this reason, RNLP provides an upper bound on the solution of ONLP.
Note that in model RNLP, bounds on vr (third group of constraints)
can be obtained from the active intervals of the disjunctions of
CMILP. For instance, let v∗

r be the solution of the master problem.
We know that v∗

r must fall within the active interval of the term of
the disjunction defined by [vh

r , vh+1
r ]. Hence, we can set vr = vh

r and

vr = vh+1
r .

4.3. Algorithm steps

The detailed algorithmic steps of the proposed strategy are as
follows:

(1) Set iteration count it = 0, UB = ∞, LB = −∞ and tolerance error
= tol.

(2) Set it = it + 1. Solve master problem CMILP.
(a) If CMILP is infeasible, stop. ONLP is infeasible.
(b) Otherwise, update the current LB as LB = max it(LBit), where

LBit is the value of the objective function of CMILP in the itth

iteration. Set bounds on vr for the slave problem accord-
ing to the solution of the master problem (vr = vh

r and

vr = vh+1
r ).

(3) Solve the slave problem RNLP.
(a) If RNLP is infeasible update the grid (see remark 5) and go

to step 2 of the algorithm.
(b) Otherwise, update the current UB as UB = min it(UBit),

where UBit is the value of the objective function of RNLP
in the itth iteration.

(4) Calculate the optimality gap OG as OG = (|UB − LB|)/UB.
(a) If OG ≤ tol, then stop. The current UB can be regarded as

the global optimal solution of ONLP within the predefined
tolerance.

(b) Otherwise, update the grid and go to step 2 of the algorithm.

4.4. Remarks

• The reformulation of Eq. (6) into two inequalities is only required
for those velocities that are involved in balances at branching
points, that is, where Eq. (3) includes more than two terms. In

RKS 
have:

�irvr = −�ir′vr′ i ∈ XT r, r′ ∈ VTi (14)

ln �ir + ln vr = ln (−�ir′ ) + ln vr′ i ∈ XT r, r′ ∈ VTi (15)
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•

•
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have already been published in the literature (Polisetty et al., 2008),
the GMA models for the two systems can also be found in the same
reference).

UNIVERSIT
GLOBAL OP WORKS 
Carlos Po
Dipòsit L
 

C. Pozo et al. / Computers and Che

ln �ir + kr + ln �r +
n+m∑
j=1

frjxj

= ln (−�ir′ ) + kr′ + ln �r′ +
n+m∑
j=1

fr′jxj i ∈ XT r, r′ ∈ VTi (16)

where XT is the set of equations involving only two terms and VTi

is the set of velocities that appear in those equations in XT . Note
that in S-System models, all the balances include only two terms.
This allows reformulating the model into a linear equivalent form,
which greatly helps computations (Voit, 1992). Another major
advantage of the logarithmic transformation is that it gives rise
to concave univariate terms (i.e., logarithmic functions) for which
tight under and over estimators can be defined.
Supporting hyper-planes can be located following different pat-
terns. It can be shown that the one that minimizes the rectilinear
distance (i.e., L1 norm) between the hyper-planes and the actual
logarithmic function is that in which this distance is the same
at every interjection of two adjacent hyper-planes (see proof in
Appendix A). This allocation can be obtained by solving an opti-
mization problem.
Similarly, the grid points of the piecewise approximation can be
selected according to different criteria. One possible strategy con-
sists of splitting the range [vr , vr] into H intervals with the same
width. It can be shown that in order to minimize the rectilinear
distance (i.e., L1 norm) between the piecewise approximation and
the logarithmic function, one needs to define intervals of equal
width in the logarithmic space (see proof in Appendix A). Hence,
we would have:

ln vh+1
r − ln vh

r = ln vh+2
r − ln vh+1

r = . . . = ln vH+1
r − ln vH

r

r = 1, . . . , p h = 1, . . . , H (17)

Increasing the number of terms of the piecewise function and
supporting hyper-planes leads to tighter bounds and hence to less
iterations. Unfortunately, this is accomplished at the expense of
adding more variables to the original problem. This is specially
critic in the case of the piecewise approximation, which requires
the definition of binary variables that increase considerably the
computational burden of the master problem and consequently
the time required by each iteration. Hence, a compromise should
be found between the number of iterations and the time spent in
each of them.
There are different ways to update the piecewise grid of CMILP
(steps 3a and 4b in the algorithm). One possible strategy is the
division of the active interval into 2 sub-intervals with the same
width either in the Cartesian space, (vh

r + vh+1
r )/2, (see Fig. 3) or

in the logarithmic space, (ln vh
r + ln vh+1

r )/2. Another possibility
is to split the active interval by adding the point corresponding
to the solution of RNLP in the last iteration.
Additional supporting hyper-planes can be iteratively added
to CMILP in order to improve the overestimation of the loga-
rithmic function. Again, the points where the new supporting
hyper-planes will be allocated can be selected following different
criteria.

. Case studies

AT ROVIRA I VIRGILI 
TIMIZATION APPLIED TO KINETICMODELS OF METABOLIC NET
zo Fernández 
egal: T.1469-2012 
As benchmark problems to test the capabilities of the approach
resented, we propose to use the ethanol production in the fermen-
ation of Saccharomyces cerevisiae (case study 1) and the citric acid
roduction by Aspergillus niger (case study 2) (see Figs. 4 and 51).

1 Figures adapted from the original work by Polisetty et al. (2008).
Fig. 3. Piecewise grid update example. As the solution of the first iteration is found
in the second interval, it is split into two sub-intervals for the next iteration.

These two problems are convenient since their optimal solutions
Fig. 4. Metabolic pathway of the fermentation of Saccharomyces cerevisiae.
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itric acid production in Aspergillus niger.
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Table 1
Numerical data of the size of the models.

Ethanol production
(Saccharomyces cerevisiae)

Citric acid
production
(Aspergillus niger)
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Fig. 5. Metabolic network for the c

The algorithm proposed in Section 4.3 was implemented in
AMS, using CPLEX (version 11.2.0) to solve the master MILPs and
ONOPT (version 3.14s) to locally optimize the slave NLPs on an

ntel 1.2 GHz machine. Data about the size of the models can be
ound in Table 1.
Note that henceforth the optimization problems we deal with
re maximizations. Thus, the convexified master problem CMILP
ill determine upper bounds to the solution of ONLP whereas the

ower bounds will be identified by the nonlinear slave problem
NLP.

CIMLP equations 518 4235
Continuous variables 50 439
Integer variables 53 471
RNLP equations 40 211
Variables 14 91
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Table 2
Results of the global optimization of the ethanol production in Saccharomyces cerevisiae (GMA models from Polisetty et al., 2008). Gap: optimality gap.

Polisetty et al.a BARON Proposed algorithm

Synthesis rate of ethanol (mM min−1) 157.59 157.59 157.59
UB Not available – 157.88
LB 157.59 – 157.59
Gap (%) Not available 0.20 0.18
Iterations – – 3
Time (CPU s) Not available 0.17 0.37

a Data termed as “Not available” is not shown in original work by Polisetty et al. (2008).

Table 3
Enzyme activities and metabolite concentrations (mM) in the global optimum for the ethanol synthesis rate in Saccharomyces cerevisiae.
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i, r 1 2 3

Kr 5.00 0.89 5.00
Xi (mM) 0.35 1.06 91.44

.1. Ethanol production in S. cerevisiae

This case study was solved using a tolerance (tol) of 0.20% and
onsidering that all the enzymes of the network are subject to mod-
fication. For comparison purposes, we solved the same problem

ith the standard global optimization package BARON. In order to
rovide the solver with a feasible starting point, the basal state solu-
ion was used. Note that this point can be easily computed before
he optimization takes place by fixing all the Kr to 1 in the original

odel and solving the resulting system of nonlinear equations.
As it can be observed in Table 2, the results produced by our

lgorithm and BARON are in consonance with those reported in
he literature by Polisetty et al. (2008): 157.59 mM/min (see Table 3
or the enzyme activities and metabolite concentrations in the solu-
ion). This is indeed a problem of small size (see Table 1 for details)
or which both algorithms are able to identify the global optimal

olution in few seconds of CPU time.

In order to further illustrate the capabilities of our algorithm, we
ave reproduced (Table 4) some of the results reported in Polisetty
t al. (2008) where only a set of reactions are allowed to be modified,
hereas the remaining enzyme activities are constrained to their

able 4
esults of the global optimization of the ethanol production in Saccharomyces cerevisiae w

n mM min−1 (solution of ONLP). Gap: optimality gap.

Polisetty et al. BARON

Case Modified
reactions r

[Kr ] LB Gap (%) Timea (CPU s) [Kr ]

1 [1, 3] [5.00, 2.85] 103.66 21.66 0.81 [5.00, 2.85]
2 [1, 4] [5.00, 5.00] 73.18 48.96 0.26 [5.00, 5.00]
3 [1, 7] [5.00, 5.00] 73.41 47.46 0.20 [5.00, 5.00]
4 [1, 6] [5.00, 0.20] 73.41 47.15 0.24 [5.00, 0.20]
5 [1, 5] [5.00, 1.65] 72.68 48.47 0.22 [5.00, 0.63]
6 [1, 8] [5.00, 5.00] 87.77 22.13 0.19 [5.00, 5.00]
7 [1, 2] [5.00, 1.97] 72.68 47.48 0.24 [5.00, 5.00]
8 [3, 7] [5.00, 5.00] 44.67 76.18 0.09 [5.00, 5.00]

a The author only reported the CPU time of the master MILP.

able 5
esults of the global optimization of the citric acid production in Aspergillus niger (GMA m

Polisetty et al.

Synthesis rate of citric acid (mM min−1) 384.23
UB 384.23
LB 384.23
Gap (%) 0.00
Iterations –
Time (CPU s) 5.68b

a Failed means that the optimality gap was higher than 100%.
b The author only reported the CPU time of the master MILP.
5 6 7 8

.20 1.25 0.20 5.00 5.00

.01 1.25 – – –

basal state (Kr = 1). These calculations provide valuable informa-
tion as the implementation of solutions requiring a large number
of genetic manipulations might be impractical due to their elevated
cost and complexity. Again, we have chosen a tolerance of 0.20% for
both, our algorithm and BARON.

As observed in Table 4, the three methods were capable of deter-
mining the global optimal solution in a similar CPU time for the
8 combinations of free reactions. BARON showed to be slightly
faster than the other two algorithms. With regard to the quality
of the solutions found, it is interesting to notice that the method
proposed by Polisetty et al. (2008) provides very loose optimality
gaps. Particularly, although the method finds the global optimum
in all the cases, the reported optimality gaps are very large (i.e.,
more than 40%). This constitutes a major limitation of this strategy.
Interestingly, we identified two cases (5 and 7) where the same
values of the objective function were obtained through three dif-

ferent enzyme activities combinations. These results suggest that
the problem possess a certain degree of degeneracy. This issue
should be carefully studied before attempting to reproduce any of
these solutions in the laboratory, as there might be some particular
features not considered in the analysis that would make the imple-

hen fixing all the enzyme activities, but two, to their basal state. LB: lower bound

Proposed method

LB Gap (%) Time (CPU s) [Kr ] LB Gap (%) Time (CPU s)

103.66 0.20 0.11 [5.00, 2.85] 103.66 0.09 0.94
73.18 0.20 0.22 [5.00, 5.00] 73.18 0.16 2.03
73.41 0.20 0.16 [5.00, 5.00] 73.41 0.11 2.17
73.41 0.20 0.12 [5.00, 0.20] 73.41 0.11 2.72
72.68 0.20 0.14 [5.00, 1.00] 72.68 0.11 2.63
87.77 0.20 0.12 [5.00, 5.00] 87.77 0.14 2.59
72.68 0.20 0.16 [5.00, 1.00] 72.68 0.11 2.49
44.67 0.20 0.2 [5.00, 5.00] 44.67 0.08 1.82

odels from Polisetty et al., 2008). Gap: optimality gap.

BARON Proposed algorithm

Faileda 384.22
– 390.66
– 384.22
– 1.68
– 4
24,000 33.37
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Table 6
Metabolite concentrations (mM) in the global optimum for the citric acid synthesis rate in Aspergillus Niger.

i Xi i Xi i Xi i Xi i Xi

1 0.02 7 0.20 13 5.60 19 0.04 25 1.41
2 1.00 8 1.00 × 10−4 14 0.01 20 0.85 26 0.98
3 0.12 9 21.21 15 31.26 21 0.71 27 0.30
4 0.02 10 130.00 16 0.52 22 0.35 28 0.26
5 0.71 11 0.01 17 1.70 23 0.01 29 6.00 × 10−8

6 0.01 12 0.01 18 22.55 24 0.01 30 0.21

Table 7
Enzyme activities in the global optimum for the citric acid synthesis rate in Aspergillus Niger.

r Kr r Kr r Kr r Kr r Kr

1 4.16 13 0.20 25 2.60 37 0.20 49 5.00
2 1.00 14 0.20 26 0.20 38 2.57 50 0.20
3 0.20 15 5.00 27 2.46 39 3.23 51 2.07
4 5.00 16 0.20 28 4.38 40 5.00 52 5.00
5 0.26 17 3.91 29 5.00 41 2.69 53 0.20
6 1.47 18 2.60 30 0.20 42 5.00 54 2.20
7 0.44 19 5.00 31 5.00 43 0.20 55 2.55
8 4.99 20 2.40 32 3.96 44 0.20 56 0.46
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9 5.00 21 1.03 33
10 5.00 22 1.00 34
11 5.00 23 1.72 35
12 2.60 24 2.72 36

entation of one of them advantageous when compared to the
thers.

.2. Citric acid production in A. niger

The procedure explained for the first case study has been applied
o solve the second case study with the only change of using a toler-
nce of 2.00%. The results obtained in the optimization are reported
n Table 5 (the optimal values of the metabolite concentrations and
he enzyme activities can be found in Tables 6 and 7, respectively).

This second case study considers a more complex network (4235
quations and 471 integer variables in the master problem vs 518
quations and 53 variables in the ethanol case). In this case, BARON
ailed at reducing the optimality gap below the specified tolerance

i.e., 2.00%) after 24,000 s of CPU time, whereas our algorithm was
ble to identify a solution in a relatively low computational time
i.e., less than 35 CPU seconds). In fact, after the aforementioned
PU time, BARON could only attain an optimality gap above 100%,
hich is very far away from the desired tolerance.

able 8
esults of the global optimization of the citric acid production in Aspergillus niger when fi
o be modified depends on the case: Case B: one reaction; Case C: two reactions; Case D:
NLP). Gap: optimality gap.

Polisetty et al.

Case Modified reactions r [Kr ] LB Gap (%) Timea

B [40] [5.00] 25.82 1234.12 9.11
B [59] [1.00] 12.35 871.17 30.13
C [40, 59] [5.00, 1.00] 25.78 1254.54 13.27
C [1, 40] [1.00, 5.00] 25.82 1241.75 26.4
D [1, 40, 60] [1.27, 5.00, 1.12] 40.88 765.46 30.49
D [1, 40, 59] [1.16, 5.00, 5.00] 176.8 98.63 9.75
E [1, 39, 40, 59, 60] [1.24, 0.88, 5.00, 5.00, 1.01] 347.32 3.23 231.9
E [1, 28, 40, 59, 60] [1.46, 1.01, 5.00, 5.00, 1.11] 256.59 38.81 46.22

a The author only reported the CPU time of the master MILP.
b Failed means that the optimality gap was higher than 100%.

able 9
ocal optimal solutions obtained by solving RNLP from different starting points.

Case 1 2

RNLP solution (mM min−1) 354.87 379.75
0.20 45 5.00 57 0.20
5.00 46 1.00 58 0.20
5.00 47 0.20 59 5.00
0.20 48 0.20 60 5.00

Additionally, we have applied our method to solve different
cases where only a set of reactions were allowed to be modified.
These cases have been selected from Polisetty et al. (2008). The
results of these calculations are shown in Table 8.

Again, our method was able to provide the global optimal
solution considering an optimality gap of 2.00% in few CPU sec-
onds. Here, case E1 deserves particular attention since our solution
slightly improves that obtained with Polisetty’s approach. On the
other hand, BARON could only reach an optimality gap above
100%.

Surprisingly, the method proposed by Polisetty et al. (2008) pro-
vides large optimality gaps for this case, where only a subset of
the enzymes are subject to modification. On the other hand, this
method is able to find the global optimum with a zero optimality

gap for the case in which all the enzymes can be changed (Table 5).

Note that increasing the complexity of the model (i.e., increasing
the number of reactions that can change) is not necessarily trans-
lated in bigger CPU times as one could expect. Although the CPU
time required to solve a problem is generally ruled by the number

xing some enzyme activities to their basal state. The number of reactions allowed
three reactions; Case E: five reactions. LB: Lower bound in mM min−1 (solution of

BARON Proposed method

(CPU s) Results [Kr ] LB Gap (%) Time (CPU s)

Failedb [5.00] 25.82 1.97 16.69
Failed [1.00] 12.35 1.33 45.15
Failed [5.00, 1.00] 25.78 1.41 52.53
Failed [1.00, 5.00] 25.82 1.97 17.93
Failed [1.27, 5.00, 1.12] 40.88 1.33 167.35
Failed [1.16, 5.00, 5.00] 176.79 1.82 18.07

7 Failed [1.40, 0.92, 5.00, 5.00, 1.07] 347.93 1.56 6.48
Failed [1.46, 1.01, 5.00, 5.00, 1.11] 256.59 1.84 1093.09

3 4 5

384.22 372.86 384.21
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f variables and constraints and also by the quality of the relax-
tion (i.e., the difference between the lower bound obtained in the
lave problem and the upper bound predicted by the master prob-
em), there are other facts that can affect it. For instance, the way
n which the branch and bound is implemented to solve the MILPs
i.e., branching rules, order in which the nodes are explored, deriva-
ion of cutting planes, etc.) can have a major influence on the total
PU time.

Finally, it is interesting to notice that during the calculations we
onfirmed the existence of multiple local optimal solutions in the
. niger model. For that, we solved the original non-convex ONLP
ith a local optimizer (i.e., CONOPT) using five different starting
oints that were calculated by solving different master problems
MILP, each of them with a different initial number of piecewise
erms (from 1 to 5). The results obtained, which are given in Table 9,
how that different local optima can be obtained depending on the
tarting point used in the initialization of the algorithm. This obser-
ation justifies the use of global optimization tools to avoid falling in
ocal optima during the search (see Table 5 for the global optimum
btained).

. Conclusions

This paper has addressed the development of a systematic
ramework for the global optimization of metabolic networks that
an be described by the Generalized Mass Action model. The strat-
gy proposed is based on reformulating the original GMA model
ia a logarithmic transformation, which gives rise to a non-convex
LP. This model is globally optimized by an outer approximation
lgorithm that exploits its specific structure.

The capabilities of the proposed method have been illustrated
y globally optimizing the fermentation pathway of S. cerevisiae
nd the metabolic network associated with the citric acid produc-
ion in A. niger. For both cases, we have obtained the appropriate
hanges that need to be performed in the corresponding enzyme
ctivities in order to maximize the production of ethanol and citric
cid, respectively. Our algorithm has been able to reproduce the
esults previously reported by Polisetty et al. (2008), but achieving
ignificant improvements in the optimality gaps of the final solu-
ions. Besides, the method proposed has shown promising results
ven when applied to a moderately complex network (case study
), absolutely surpassing the performance of BARON, which failed
o solve that particular example within the predefined tolerance.

The generality of the optimization framework introduced in this
aper makes it very interesting for biotechnological applications.
t this point, the major drawbacks for getting practical results are:

1) the ability of obtaining appropriate models; and (2) the possi-
ility of effectively manipulating the required enzymes. The main

imitation for obtaining good mathematical models is the lack of
xperimental data that can be used for parameter estimation (Chou
Voit, 2009). Unfortunately, most of the Systems Biology effort has

ocused on gene sequences, protein structures, and so on, with rela-
ively few results on actual data on intact systems. The kind of data
equired for this task would involve measuring metabolites and
uxes in vivo, a problem that is not totally solved yet. The optimiza-
ion method presented here can yield valuable insights if and only
f the underlying model is a good approximation to reality. Besides
his problem, optimization results require experimental confirma-
ion; that is manipulation of enzymes for obtaining the desired
ptimal increment on the objective function. However, although
ene expression changes can be easily introduced in living cells,

AT ROVIRA I VIRGILI 
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zo Fernández 
egal: T.1469-2012 
here is no guaranty that an appropriate change in enzyme activity
s also obtained.

In conclusion, our results show that it is possible to appro-
riately analyze a highly non-linear mathematical model and
btain optimal solution for a given objective function. This should
ngineering 34 (2010) 1719–1730 1727

stimulate experimentalists for developing appropriate tools for
measuring living cells and for manipulating them so that practical
results can be obtained.
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Appendix A.

Lemma 1 shows that the maximum error between the linear
outer approximation and the logarithmic function lies in a ver-
tex. Proposition 1 uses the results of Lemma 1 to show that the
allocation of hyper-planes that minimizes the rectilinear distance
(i.e., L1 norm) between the hyper-planes and the actual logarithmic
function is that in which this distance is the same at every interjec-
tion of two adjacent hyper-planes. Lemma 2 and Proposition 2 are
similar to Lemma 1 and Proposition 1 but apply to the piece-wise
approximation. Finally, Proposition 3 complements Proposition 2
and provides a direct way of defining a piece-wise approximation
with minimum error.

Lemma 1. Consider an outer approximation of the function ln vr with
L supporting hyper-planes (see Fig. 6). The maximum error, errormax,
(defined as the linear distance, L1norm), between the hyper-planes and
the logarithmic function is attained in a vertex.

Proof. We first show that the point with the maximum error lies
in a hyperplane, and then prove that it must correspond to one
of its intersections with adjacent hyperplanes. Consider problem
PA, which seeks the maximum difference between a set of hyper-
planes and the logarithmic function:

(PA) min ln vr − y

s.t. y −
(

ln vl
r + 1

vl
r

(
vr − vl

r

))
≤ 0 l = 1, . . . , L

v − v ≤ 0

S 
Fig. 6. Approximation of the ln vr function by L supporting hyper-planes.
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here vr ≤ vl
r ≤ vr . The Karush-Kunh-Tucker (KKT) conditions of PA

re:

1 +
L∑

l=1

ul
1 = 0 (18)

1
vr

−
L∑

l=1

ul
1

vl
r

+ u2 − u3 = 0 (19)

l
1

(
y −

(
ln vl

r + 1

vl
r

(
vr − vl

r

)))
= 0 (20)

2(vr − vr) = 0 (21)

3(vr − vr) = 0 (22)

l
1 ≥ 0 (23)

2 ≥ 0 (24)

3 ≥ 0 (25)

From Eq. (18), it follows that at least one supporting hyper-plane
SH) must be active in the optimal solution. Now, consider problem
B that seeks the maximum error along the active SHl between its
xtremes vlo

r and vup
r , which are given by the intersection of the

yper-plane with either an adjacent SHj or a limit of the interval
vr , vr].

(PB) min ln vr −
(

ln vl
r + 1

vl
r

(
vr − vl

r

))

s.t. vr − vup
r ≤ 0

vlo
r − vr ≤ 0

vr ∈R+

The KKT conditions of PB are:

1
vr

− 1

vl
r

+ u1 − u2 = 0 (26)

1(vr − vup
r ) = 0 (27)

2(vlo
r − vr) = 0 (28)

1 ≥ 0 (29)

2 ≥ 0 (30)

here are 3 possible solutions to this problem.
Case 1: u1 = u2 = 0. From Eq. (26), we have:

∗
r = vl

r

nd the resulting value of the objective function is:

F = 0

It is easy to see that this point is a maximum of PB in which the
rror is minimum. Note that this is the point in which the hyper-
lane touches the logarithmic function.

Case 2: u1 = 0, u2 /= 0. From Eqs. (26) and (28), we get:

∗
r = vlo

r ; u2 = 1

vlo
r

− 1

vl
r

≥ 0 OF = ln

(
vlo

r

vl
r

)
− vlo

r

vl
r

+ 1

ence, this point is a minimum of PB and corresponds to a vertex.
Case 3: u2 = 0, u1 /= 0. From Eqs. (26) and (27), we get:

∗ up 1 1
(

vup
r

)
vup

r
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r = vr ; u1 =
vl

r

−
vup

r

≥ 0 OF = ln
vl

r

−
vl

r

+ 1

his point (again a vertex) is another minimum of PB. Hence, the
olution of PB must correspond to a vertex, and the proof is com-
lete. �
Fig. 7. Illustration of the decrease in errormax by moving SHl a distance ı towards
the vertex vl,l+1

r .

Proposition 1. The allocation of L hyper-planes that minimizes
errormax is that in which the error is the same in all the L+1 vertexes.

Proof. The proof is by contradiction. From Lemma 1, we know
that the maximum error between the hyper-planes and the loga-
rithmic function is attained in a vertex. Assume that in the optimal
allocation there is at least one vertex vl,l+1

r with a different error.
Now, identify a supporting hyperplane SHl with different errors
in its extreme vertexes (errorl−1,l in vl−1,l

r and errorl,l+1 in vl,l+1
r ).

Assume, without loosing generality, that errorl,l+1 ≥ errorl−1,l . Now,
we consider two cases:

Case 1: the maximum errormax = max l /= l′ {errorl,l′ } corresponds

to the right vertex vl,l+1
r of the selected hyperplane, that is,

errormax = errorl,l+1. Now, define errorold
l,l+1 = errorold

max and move the

hyperplane SHl a small distance ı towards vl,l+1
r , that is, make

vl,l+1new
r = vl,l+1old

r + ı, thus decreasing the slope of SHl . This move
decreases errorl,l+1 at the expense of increasing errorl−1,l . Since the
logarithmic function is continuous, it is possible to find ı such that
errorold

l−1,l
< errornew

l−1,l
= errornew

l,l+1 < errorold
l,l+1 (Fig. 7), that is, a new

solution with a smaller error in the right vertex of SHl , and hence
with a smaller errormax. This contradicts the fact that in the optimal
solution there are vertexes with different errors.

Case 2: errormax is placed in another hyper-plane SHl′ (l′ /= l, l +
1). In this case, the same procedure can be repeated recursively to
the rest of the hyper-planes until no more hyper-planes containing
different errors in their vertexes remain. It is straightforward to
see that this would lead to a solution with lower errormax, which
contradicts the assumption that the optimal allocation implies the
existence of at least one hyplerplane with different errors in its
extremes vertexes. �

Lemma 2. Consider an underestimation of the ln vr function with a

linear piecewise (PW) section (Fig. 8). The maximum error, errormax,
defined as the L1 norm (i.e., error(vr) = ln vr − avr − b) between the
ln vr and the PW linear function occurs at v∗

r = 1/a
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Fig. 8. Approximation of the ln vr function by a one interval linear function.

roof. The error is a concave function that depends on a single
ariable, hence in the optimal solution we get:

rror′ = 1
vr

− a = 0 ↔ v∗
r = 1

a
error′′ = − 1

v2
r

≤ 0

herefore, v∗
r = 1

a is a maximum of the function error. �

roposition 2. Consider a piece-wise approximation of the function
n vr with H intervals. Let errorh be the maximum error in the hth inter-
al of the PW function and errormax the maximum error among the
ifferent intervals (errormax = max h{errorh}). The piece-wise approx-

mation that minimizes errormax is that in which errorh = errorh′ ,
h,h′(h /= h′).

roof. The proof is by contradiction. From Lemma 2 we know
hat the maximum error in a piecewise section PWh is attained at
/a. Assume that the optimal distribution of the domain is that
here there is at least one section h with a different error, errorh >

rrorh+1. Consider the following cases:

Case 1: errorh = errormax. Move the grid point vh
r = vh+1

r a dis-

ance ı towards vh
r , that is, make vhnew

r = vhold
r − ı, thus increasing

h and decreasing ah+1. This decreases errorh and increases errorh+1.
ince the logarithmic function is continuous, we can define a ı such
hat errorold

h+l
< errornew

h+l
= errornew

h
< errorold

h
(Fig. 9), that is, a new

olution with a smaller errormax. This contradicts the original state-
ent that in the optimal solution there are sections with different

rrors.
Case 2: errormax = errorh′ /= errorh (h′ /= h). It is straightforward

o see that we can follow the same strategy described before until
he error in every couple of adjacent sections is the same and
maller than errorold

max. �

roposition 3. The distribution of the H intervals where errorh =
rrorh′ , ∀h,h′(h /= h′) corresponds to that where all PW sections are of
qual width Q in the logarithmic space.

roof. Consider two piecewise sections2PWh and PWh+1 defined
y grid point vh+1

r . When errorh = errorh+1 the following relation-
hip holds:

n
(

1
ah

)
− 1 − bh = ln

(
1

ah+1

)
− 1 − bh+1

→ ln
(

ah+1

ah

)
− (bh − bh+1) = 0 (31)
As the piecewise functions take the same value at the common

rid point vh
r = vh+1

r , we can rewrite Eq. (31) in terms of ah, ah+1 and

2 Note that more intervals could be considered and generality would not be lost.
Fig. 9. Illustration of the decrease in errormax by moving the grid point vh
r a distance

ı.

vh+1
r :

ln
(

ah+1

ah

)
− vrh+1 (ah+1 − ah) = 0 (32)

Now, we introduce two new variables Q and Q ′ defined as:

Q = ln vh
r − ln vh

r (33)

Q ′ = ln vh+1
r − ln vh+1

r (34)

Hence, we can express the width of each interval in the cartesian

space (i.e., vh
r − vh

r and vh+1
r − vh+1

r ) in terms of Q and Q ′:

vh
r = vh

r

exp Q
→ vh

r − vh
r = vh

r

exp Q
(exp Q − 1) (35)

vh+1
r = vh+1

r

exp Q ′ → vh+1
r − vh+1

r = vh+1
r (exp Q ′ − 1) (36)

Similarly, we can redefine the slope of each of the linear piece-
wise functions, ah and ah+1, in terms of Q, Q ′ and vh+1

r :

ah =
ln vh

r − ln vh
r

vh
r − vh

r

= Q (exp Q )

vh+1
r (exp Q − 1)

(37)

ah+1 =
ln vh+1

r − ln vh+1
r

vh+1
r − vh+1

r

= Q ′

vh+1
r (exp Q ′ − 1)

(38)

By introducing Eqs. (37) and (38) into Eq. (32), the following
equality is obtained:

ln
(

Q ′ (exp Q − 1)
(exp Q ′ − 1) Q (exp Q )

)

−
(

Q ′

(exp Q ′ − 1)
− Q (exp Q )

(exp Q − 1)

)
= 0 (39)

When Q ′ = Q (i.e., when the intervals are of equal width in the
logarithmic space) this equation is satisfied. �
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ABSTRACT: The identification of the enzymatic profile that achieves a maximal production rate of a given metabolite is an
important problem in the biotechnological industry, especially if there is a limit on the number of enzymatic modulations allowed.
The intrinsic nonlinear behavior of metabolic processes enforces the use of kinetic models, such as the generalized mass action
(GMA) models, giving rise to nonconvex MINLP formulations with multiple local solutions. In this paper, we introduce a
customized spatial branch-and-bound strategy devised to solve efficiently these particular problems to global optimality. A tight
MILP-based relaxation of the original nonconvex MINLP is constructed by means of supporting hyperplanes and piecewise linear
underestimators. The overall solution procedure is expedited through the use of bound tightening techniques and a special type of
cutting plane. The capabilities of the proposed strategy are tested through its application to the maximization of the citric acid
production in Aspergillus niger. We also provide a numerical comparison of our algorithm with the commercial package BARON and
an outer approximation-based method earlier proposed by the authors.

1. INTRODUCTION

Cellular and molecular biology has experienced a dramatic
paradigm switch driven by the introduction of new technological
and computational tools. This change has led to a wide accep-
tance of networks and their emergent properties as a central
subject for understanding the evolution of cell metabolism. The
emergence of systems biology as a discipline based on high
throughput experimental techniques, bioinformatics methods,
and mathematical modeling is the result of these advances. One
of the consequences of this activity is a renewed interest in
biotechnological applications that ranges from industrial pro-
ducts based onmodified organisms to the possibility of designing
new organisms.1-4

Cellular metabolism is a complex system that involves a huge
number of components interacting in a dynamic way through
nonlinear processes. This makes biological systems much more
challenging than human designed factories and industrial products.
In most problems, appropriate simplifications are required to grasp
part of this complexity and to obtain practical results both in
understanding the evolutionof emergent properties and inpredicting
systems responses to experimental manipulation.5-7

Advances in molecular biology techniques have made it
possible to modulate the expression of genes in a given organism
in order to obtain strains with enhanced phenotypes.8,9 Being
able to improve the yield through modified strains is a crucial
aspect for successful biotechnological applications. However, the
intrinsic complexity of metabolic networks makes an intuitive
inference of the most promising genetic changes a highly difficult
(if not impossible) task. Henceforth, systematic optimization
tools are required for improving metabolic engineering so that
biotechnological applications can be made useful and affordable.

Optimization is not at all a new concept in biology.10-13 It is
clear that mathematical programming approaches offer a

promising framework for analyzing mathematical models of
biological systems in a systematic way, shedding light on the
strategies that must be followed in order to improve their
properties.9,12,14-16 In particular, one of the areas in which
systematic tools based on mathematical programming hold good
promise is the analysis and manipulation of metabolic networks
through gene expression modification.17-20 From the point of
view of industrial applications, the use of optimization methods
in systems biology applications has gained wider interest.9 Be-
sides their application in increasing the yield of specific products,
these techniques have also been used to explain the current
adaptive responses of organisms and to predict the properties of
new designs.9,21,22

While existing optimization techniques may be of some help,
the complexity of cellular metabolism requires the development
of global optimization methods that could be applied to these
kinds of nonlinear problems. With these techniques, one expects
that actual biological processes could be further improved by
identifying quantitative operation principles that would help in
deciding which genes should be modified and which is the
optimal profile for obtaining a given goal. The fact that biological
experiments are expensive and time-consuming9 coupled with
the usefulness of computational techniques when modeling
metabolic networks23 contributes to increasing the attractiveness
of developing appropriate optimization approaches to address
these problems.
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Flux balance analysis attempts this prediction by the optimiza-
tion of stoichiometric models.24 This approach leads to mixed-
integer linear problems (MILP) that can be effectively solved by
standard branch-and-bound techniques. This has been the main
key of their success in different applications.25-30 Unfortunately,
this technique fails to capture the regulatory relationships that
commonly exist between processes in metabolic networks.31

These limitations can be overcome by resorting to kinetic
metabolic models that account for the relationship between the
concentration of metabolites and the fluxes in the network.
Specifically, nonlinear kinetic expressions are preferred, as linear
estimations have been found to be only valid for a narrow range
around the approximation point.8

Among the available formalisms, models based on the power-
law formalism in the variant form known as generalized mass
action (GMA from here on) exhibit some particular advantages
that make their application rather convenient.32-37 For instance,
as will be explained in detail later in the paper, they can
adequately capture the nonlinear behavior of the metabolic
regulations while exhibiting some linear properties when ex-
pressed in the logarithmic space. Furthermore, they are able to
describe any particular metabolic network37 what grants the
generality of the framework presented herein. On the other hand,
this approach gives rise to nonconvex models and, hence, to
multimodality (i.e., existence of multiple solutions).9 It should be
emphasized that guaranteeing global optimality is of paramount
importance in this type of problem, as a local optimal solution
may lead to a completely different physical interpretation and
objective function value than that associated with the global
optimum, thus hampering the entire biological analysis.38

Global optimization addresses the computation and charac-
terization of global optima (i.e., minima and maxima) of non-
convex functions constrained in a specified domain.39 It has been
the object of intense research during the past 15 years, but it is
expected to continue as a major challenge in nonlinear optimiza-
tion in the upcoming years.40

Global optimization approaches can be classified into stochas-
tic or deterministic ones. Stochastic methods are nondetermi-
nistic approaches (i.e., they cannot guarantee global optimality)
that make use of meta-heuristics in order to guide the search for
“good” solutions from a series of pseudorandom generated
points. These methods are often based on physical and biological
analogies. On the other hand, deterministic methods are rigorous
and, thus, can guarantee global optimality within a desired
optimality gap. These methods rely on the calculation of a series
of valid upper and lower bounds for the global optimum of the
problem that approach each other during the execution of the
algorithm until the optimality gap is reduced below a predefined
tolerance. Among the different methods that may be included in this
group, the most commonly used are the outer-approximation
(OA)41 and the spatial branch-and-bound (B&B) methods.42-46

In OA, the original problem is decomposed into two different
subproblems at two different hierarchical levels: a master lower
bounding problem and a slave upper bounding problem. The
former is a relaxation of the original problem (i.e., it over-
estimates the feasible region of the original problem) that
provides lower bounds on its global optimum. The latter entails
the solution of the original problem in a reduced search space. In
each iteration, the solution of the master problem is used as a
starting point to solve locally the slave problem in a reduced
search space (i.e., bounds are provided to some variables
according to the solution of the master problem). If the

optimality gap is found to be within a given tolerance, the
algorithm terminates. Otherwise, the relaxation of the master
problem is improved (i.e., is tightened) at the expense of
introducing more variables.

On the other hand, in the spatial branch-and-bound (sBB here
on; do not confuse with the MINLP solver sBB that implements
a nonlinear branch and bound) method, the original problem is
allocated in the root node of an exploration tree. Lower and
upper bounds for the problem are compared, and if the desired
tolerance is not met, the problem is split into two smaller
subproblems (descendants) by partitioning the feasible space
of a continuous variable (branching variable). Then, the two new
problems are solved, if required, by recursive partitioning. If a
node is proved not to contain the global optimum, then the
associated branch in the sBB tree can be pruned. At the end, the
global optimal solution is to be found in one of the subproblems
derived during the process. This method is based on the idea of
“divide and conquer” as each of the subproblems is smaller, and
thus easier to solve, than the original one.

Multiple methods have been devised so far as variations from
the original sBB. These methods include branch-and-reduce,47,48

RBB,49-54 symbolic reformulation,38,55,56 reduced-space branch-
and-bound,57 branch-and-contract,58 and the branch-and-cut
framework proposed by Barton.59 Some interval arithmetic
global optimization methods60-62 are sBB-like methods.63 It
has been observed that the performance of global optimization
methods is highly dependent on the type of nonlinearities.8

Henceforth, by exploiting the special mathematical structure of
the problem under investigation,64,65 it is possible to devise
tighter relaxations that lead to faster algorithms.66

The application of global optimizationmethods to the analysis
of metabolic networks that are described though nonlinear
models (e.g., GMA formalism) has been scarce. Polisetty et al.67

were the first ones to address this problem. In their work, they
present a B&B procedure to identify the enzymes to be modified
for efficiency in yield and cost. Later, Pozo et al.68 proposed an
outer-approximation algorithm that improved the method by
Polisetty in terms of quality of the solutions provided (i.e.,
significantly smaller optimality gaps) and CPU time. The authors
also presented a rigorous theoretical analysis on the construction
of tight piecewise approximations and supporting hyperplanes.
This method was also used to study the evolution of the cellular
metabolism.21,22

In this work, we present a novel sBB method for the global
optimization of metabolic networks that are modeled via the
GMA formalism. Our computational procedure exploits the
specific structure of the GMA models in order to construct tight
MILP-based relaxations of the original nonconvex formulation.
These linear relaxations are tightened through the use of a special
type of cutting planes that are derived from some equations of the
model. The sBB method is further expedited by tailored-made
branching rules and bound contraction procedures based on
interval analysis. The capabilities of this customized sBB are
tested through a case study that addresses the optimization of
citric acid production by Aspegillus niger. The results produced by
our algorithm are compared with those generated by an outer
approximation-based method introduced by the authors in
previous works and also with the commercial global optimization
package BARON.21,22,68

The paper is organized as follows. The problem is presented in
section 2, and its mathematical formulation is proposed in
section 3. The customized sBB is described in detail in section
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4, whereas section 5 contains some numerical results. Finally, in
section 6, we discuss some particular issues about the perfor-
mance of the proposed methodology and its implementation.

2. PROBLEM STATEMENT

A metabolic network (Figure 1) is composed of a set of
reactions and transportation processes (represented by arrows in
the figure), generally ruled by enzymes, which transform organic
substrates into metabolic intermediates and energy compounds
(i.e., metabolites, in general). Some of these metabolites
(represented by boxes in the figure) can also inhibit or facilitate
some processes in the metabolic network. For instance, M4
inhibits P2 and M1 facilitates P5 in the figure.

The problem under study is the determination of the levels of
the enzymes activities that maximize the synthesis rate of a
particular metabolite in a metabolic pathway. The GMA repre-
sentation is used to model the metabolic network behavior
assuming steady state conditions. It is considered that all model
parameters are deterministic in nature (i.e., perfectly known in
advance without any variability). These parameters include the
stoichiometric coefficients of the chemical reactions and the
transportation processes, as well as the rate constants and kinetic
orders of the power-law formalism describing these processes.

Under these conditions, we aim to customize a sBB global
optimization method that may improve our previous results for
this class of models. Due to the canonical representation
provided by the GMA modeling strategy, this goal is of para-
mount importance for practical biotechnological applications.

3. MATHEMATICAL FORMULATION

The optimization problem is mathematically formulated as a
MINLP, in which continuous variables denote metabolite con-
centrations and velocities, and binary variables model the
changes in the enzyme levels. We first present the GMA
formalism and then introduce the overall MINLP formulation.
3.1. GMA Representation. The concentration X of every

single metabolite i present in the metabolic network can be
determined at a particular time t from the p flows of the network:

dXi

dt
¼ ∑

p

r¼1
μirvr i ¼ 1, :::, n ð1Þ

In eq 1, the stoichiometric coefficient, μir, accounts for the
number of molecules of metabolite i that are involved in process
r. Hence, it is an integer parameter that is positive if process r
contributes to the synthesis of metabolite i, negative if it depletes
the concentration of i, and zero if process r does not directly
influence the concentration of metabolite i. The velocity at which
process r occurs, which is denoted by vr, is described by a kinetic

equation. In GMA models, the so-called power-law
formalism69-71 is the kinetic equation of choice (eq 2).

vr ¼ γr
Yn þ m

j¼ 1

X
frj
j r ¼ 1, :::, p ð2Þ

Here, γr is the basal state activity of the enzyme governing process r,
whereas frj is the kinetic order of metabolite j in process r. This
representation accounts for the m external (i.e., independent)
metabolites, whose concentration is constant throughout the process
(Xj = constant, j = nþ 1, ..., m). By introducing eq 2 into eq 1 and
removing the time dependence (we are interested in solving the
steady state for which dXi/dt= 0 applies), a completeGMAmodel as
in eq 3 is obtained.

∑
p

r¼1
ðμirγr

Yn þ m

j¼ 1

X
frj
j Þ ¼ 0 i ¼ 1, :::, n ð3Þ

3.2. MINLP Formulation. Since genetic manipulations will
take place on an unmodified strain (i.e., at its basal state), it is
convenient to express the optimal enzyme activities as a fold-
change Kr over their basal state levels γr. According to this, we
can rewrite eq 2 as follows:

vr ¼ Krγr
Yn þ m

j¼ 1

X
frj
j r ¼ 1, :::, p ð4Þ

Here, Kr is a positive continuous variable that will take the value
of 1 at the basal state (i.e., when the enzyme levels are not
manipulated). Furthermore, Kr > 1 indicates overexpression of
enzyme r, and Kr < 1 denotes its inhibition. This variable is
allowed to change between given bounds, Kr

LB and Kr
UB as stated

in eq 5.
KLB
r e Kr e KUB

r r ¼ 1, :::, p ð5Þ
The number of enzymes that can be modified at a time is

constrained to be lower than an upper limit. The motivation for
this is that a large number of genetic manipulations might be
impractical. This is modeled through a disjunction that deter-
mines whether a specific enzyme is modified or not:

Yr1
KLB
r e Kr e 1- δ

" #
∨ Yr2

1- δ e Kr e 1þ δ

" #

∨ Yr3
1þ δ e Kr e KUB

r

" #
Yr1, Yr2, Yr3 ∈ fTrue, Falseg

r ¼ 1, :::, p ð6Þ
Here, δ is a sufficiently small parameter (i.e., numerical results
shown in this work were obtained using a value of 5� 10-7), and
Yr is a Boolean variable that is true if the associated term of the
disjunction is satisfied and false otherwise. The disjunction in
eq 6 can be reformulated into linear inequalities by applying
either the Big-M or convex hull reformulations.72,73 The latter,
known to provide a relaxation at least as tight as the former,72

gives rise to eqs 7-11.

Kr ¼ Kr1 þ Kr2 þ Kr3 r ¼ 1, :::, p ð7Þ

KLB
r yr1 e Kr1 e ð1- δÞyr1 r ¼ 1, :::, p ð8Þ

Figure 1. Example of a generic metabolic network, where processes are
represented by arrows and metabolites by boxes.
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ð1- δÞyr2 e Kr2 e ð1þ δÞyr2 r ¼ 1, :::, p ð9Þ

ð1þ δÞyr3 e Kr3 e KUB
r yr3 r ¼ 1, :::, p ð10Þ

yr1 þ yr2 þ yr3 ¼ 1 r ¼ 1, :::, p ð11Þ
These equations enforce the definition of the binary variables

yr1, yr2, and yr3, which take the value of one if the corresponding
term of the disjunction holds true and zero otherwise. These
binary variables are then used to define an upper bound ME on
the total number of enzymes that can be modified as follows:

∑
p

r¼ 1
yr1 þ ∑

p

r¼1
yr3 e ME ð12Þ

Typically, metabolite concentrations will be allowed to change
within given bounds (XLB and XUB, respectively):

XLB
i e Xi e XUB

i i ¼ 1, :::, n ð13Þ
Generally, the objective of these problems is to maximize the

synthesis rate of the desired product (note that any other
objective function could be evaluated if required). For the sake
of simplicity, we pose the problem as a minimization one by
reversing the sign of the objective function:

min - ∑
p

r¼ 1
μirνr ð14Þ

Recall that only the velocities involved in the production of the
desired metabolite must be considered in eq 14. The resulting
MINLP that embeds the GMA equations can be expressed in
compact form as follows:

ðOMINLPÞ min -∑
p

r¼1
μirvr

s:t: eqs 1; 4; and 7-13

Model OMINLP [note that the authors have uploaded a
similar model to ref 74] seeks the appropriate changes in the
enzyme activities (continuous variables) that maximize the
synthesis rate of the desired product. The enzyme activities
calculated by themodel can be implemented in the real system by
tuning the expressions of the corresponding genes. Note that
when the number of simultaneous modifications is not limited
(recall that in our case it is), we can drop the binary variables,
which gives rise to a nonconvex NLP problem.
Constraints in OMINLP define a nonconvex search space

where multiple local optima may exist. Hence, in order to solve
OMINLP to global optimality, we must resort to global optimi-
zation techniques.

4. SOLUTION STRATEGY

In this section, we present our customized sBB method for
solving problem OMINLP to global optimality. This method
makes use of a MILP-based linear relaxation of the nonlinear
equations present in theMINLP formulation.We first describe in
detail the way in which this relaxation is constructed before
presenting the particularities of the sBB algorithm.
4.1. Relaxed Subproblem. In order to build a linear relaxation

of OMINLP, we introduce two new auxiliary variables, kr and xi,
that are defined by an exponential transformation as follows:

Kr ¼ exp kr r ¼ 1, :::, p ð15Þ

Xi ¼ exp xi i ¼ 1, :::, n ð16Þ

These variables replace the original ones, Kr and Xi, appearing
in eq 4, thus giving rise to eq 17.

vr ¼ ðexp krÞγr
Yn þ m

j¼1

ðexp xjÞfrj r ¼ 1, :::, p ð17Þ

Let p(i) denote the number of velocity terms explicitly expressed
in the mass balance of metabolite i, that is, for which μir 6¼ 0.
Velocities vr appearing only in instances of eq 1 with p(i) = 2 are
next transferred to linear constraints by introducing eq 17 into
eq 1 and taking logarithms as follows:

0 ¼ μirνr þ μir0vr0

μirðexp krÞγr
Yn þ m

j¼ 1

ðexp xjÞfrj ¼ - μir0 ðexp kr0 Þγr0
Yn þ m

j¼1

ðexp xjÞfr0 j

lnðμirÞ þ kr þ lnðγrÞ þ ∑
n þ m

j¼ 1
frjxj ¼ lnð-μir0 Þ þ kr0

þlnðγr0 Þ þ ∑
n þ m

j¼ 1
fr0jxj " ijpðiÞ ¼ 2 ð18Þ

Recall that when the concentration of a metabolite is only
determined by two processes, the stoichiometric coefficient of
one of themmust be negative, and hence, no domain violation for
the logarithmic function can occur in eq 18.
On the other hand, when vr appears in at least one instance of

eq 1 with more than two terms (i.e., p(i) g 3), we make the
following changes. We reformulate eq 4 by taking logarithms in
both sides of the constraint:

lnðvrÞ ¼ kr þ lnðγrÞ þ ∑
n þ m

j¼ 1
frjxj " r ∈ rlin ð19Þ

In this equation, rlin denotes the set of velocities r that are
linearized by this process. In mathematical terms, r ∈ rlin⊂{r}S
$i|μir 6¼ 0∧p(i) g 3.
The right-hand side of eq 19 is now linear, but the logarithm in

the left-hand side gives rise to a nonconvex search space. To
linearize this nonconvex term, we reformulate the equation into
two inequalities (eqs 20 and 21) and replace their left-hand sides
with linear estimators.75

lnðvrÞ g kr þ lnðγrÞ þ ∑
n þ m

j¼ 1
frjxj " r ∈ rlin ð20Þ

lnðvrÞ e kr þ lnðγrÞ þ ∑
n þ m

j¼ 1
frjxj " r ∈ rlin ð21Þ

The left-hand side of equation eq 20 can be overestimated by L
supporting hyperplanes, which are first-order Taylor expansions
of the natural logarithm defined at L linearization points vr

l within
the domain [vr

LB,vr
UB].

ln vr e ln vlr þ
1
vlr
ðvr - vlrÞ " r ∈ rlin l ¼ 1, :::, L ð22Þ
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By combining eq 22 with eq 20, we obtain the following linear
constraint (eq 23):

ln vlr þ
1
vlr
ðvr - vlrÞ g kr þ lnðγrÞ

þ ∑
n þ m

j¼1
frjxj " r ∈ rlin l ¼ 1, :::, L ð23Þ

Note that the quality of the relaxation depends on the number of
linearizations added to the model.
On the other hand, the logarithmic term ln vr in eq 21 is

underestimated by means of a piecewise linear function76-78

defined over H subintervals within the domain [vr
LB,vr

UB] as
follows:

ln vr g

a1r vr þ b1r v1r e vr e v2r
a2r vr þ b2r v2r e vr e v3r

...

ahr vr þ bhr vhr e vr e vh þ 1
r

...

aHr vr þ bHr vHr e vr e vH þ 1
r

8>>>>>>>>>>><
>>>>>>>>>>>:

ð24Þ

where ar
h and br

h are the coefficients of the straight line that is
active in the hth interval defined by the limits vr

1 = vr
LB and vr

Hþ1 =
vr
UB. This can bemodeled as a disjunction with h terms as follows:

∨H
h¼1

Zh
r

vhr e vr e vh þ 1
r

ahr vr þ bhr e kr þ lnðγrÞ þ ∑
n þ m

j¼ 1
frjxj

2
66664

3
77775 "r ∈ rlin

Zh
r ∈ fTrue, Falseg

ð25Þ
Here, the Boolean variable Zr

h indicates whether the hth interval
of the rth velocity is active or not. The last equation inside the
disjunction is obtained by combining eq 21 and eq 24. The
disjunction in eq 25 can be translated into linear equations
through the convex hull reformulation.

vr ¼ ∑
H

h¼ 1
vhhr " r ∈ rlin ð26Þ

vhr z
h
r e vhhr e vh þ 1

r zhr " r ∈ rlin h ¼ 1, :::,H ð27Þ

∑
H

h¼ 1
zhr ¼ 1 " r ∈ rlin ð28Þ

∑
H

h¼ 1
ðahr vhhr þ bhr z

h
r Þ e kr þ lnðγrÞ þ ∑

n þ m

j¼1
frjxj " r ∈ rlin

ð29Þ
where vhr

h is a disaggregated variable and zr
h is a binary variable

that takes the value of 1 if the hth interval of the rth velocity is
active and 0 otherwise. Note that, in contrast with the supporting
hyperplanes, the piecewise formulation does require the defini-
tion of binary variables. Hence, a proper balance should be found
between the number of intervals and the quality of the relaxation,

so that the computational burden of the model does not explode
with the addition of a large number of binary variables.
Finally, eqs 7-10 are rewritten as follows:

kr ¼ kr1 þ kr2 þ kr3 r ¼ 1, :::, p ð30Þ

lnðKLB
r Þyr1 e kr1 e lnð1- δÞyr1 r ¼ 1, :::, p ð31Þ

lnð1- δÞyr2 e kr2 e lnð1þ δÞyr2 r ¼ 1, :::, p ð32Þ

lnð1þ δÞyr3 e kr3 e lnðKUB
r Þyr3 r ¼ 1, :::, p ð33Þ

Recall that bounds on variable Xi need to be expressed in the
space of variables xi as shown in eq 34.

lnðXLB
i Þ e xi e lnðXUB

i Þ i ¼ 1, :::, n ð34Þ
The lower bounding problem can be expressed in compact form
as follows:

ðCMILPÞ min- ∑
p

r¼ 1
μirvr

s:t: eqs 1; 11; 12; 18; 23; and 26-34

It should be clarified that the reformulation presented here is
an opt-reformulation since all local and global optima of the
original problem are mapped into local and global optima of the
reformulated model.63 Problem CMILP can be solved via
standard methods for MILP problems such as the B&B.46

4.2. Customized Spatial Branch-and-Bound. The spatial
branch-and-bound algorithm we propose to solve problem
OMINLP exploits the particular features of the GMA model.
The method is based on sequentially solving subproblems
obtained by partitioning the original domain. A spatial branch-
and-bound tree (sBB tree from here on) is used to represent the
hierarchy of nodes.
Let OMINLPk andCMILPk denote theOMINLP andCMILP

subproblems associated with node k of the sBB tree. The original
problem, OMINLP, is allocated in the root node (k = 0). A
convex relaxation of the original problem (model CMILP0) is
solved in order to obtain a valid lower bound on the global
optimum of the original formulation.42,44,79,80 An upper bound
for the node can also be computed by optimizing locally the
original model OMINLP0 using the solution provided by
CMILP0 as starting point. If the optimality gap of the node is
above the tolerance, then we generate subproblems OMINLP1

and OMINLP2 by splitting (branching) the domain of one of the
p velocities vr. This is equivalent to creating two descendant
nodes in the sBB tree. Every time a subproblem OMINLPk is
created, it is added to a list T containing all of the active (i.e., yet
to explore) nodes in the sBB tree. Each of these subproblems is
then solved exactly in the same manner as OMINLP0, in order to
produce lower and upper bounds for each of the nodes. Recall
that in these subproblems, we impose lower and upper limits on
the variables according to the selected branching scheme. Every
time a node is evaluated, the associated OMINLPk problem is
eliminated from T.
If at any node k of the sBB tree CMILPk is infeasible, the node

can be pruned, as it does not contain any feasible solution to
OMINLP. If this happens at node 0, then OMINLP is infeasible.
Similarly, if the optimal solution to CMILPk, denoted by rOF*, is
above the overall upper bound OUB (i.e., the best bound
considering all the nodes of the sBB tree), we can prune this
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node, as proceeding in this branch will only lead to worse
solutions (note that as we go deeper in the tree, subproblems
are more restricted). After updating OUB, we can prune those
nodes in the active list with a lower bound greater than OUB.
Search trees are only finite for an ε-tolerance.40 Hence, a node

can be fathomed when the difference between the upper and
lower bounds is smaller than the tolerance. We update OUB
whenever the upper bound of the node is lower than the current
OUB. The overall lower bound (OLB) corresponds to the lowest
among the lower bounds of the active nodes in the sBB tree. The
algorithm terminates when the gap between OUB and OLB is
reduced below the ε-tolerance.
In the next few sections, we highlight some particular features

of our sBB strategy.
4.2.1. Branching Strategy. An effective branching technique50,81

aims at minimizing the size of the sBB tree and, thus, can strongly
affect the performance of the algorithm.63 In contrast with the
application of B&B to MILP optimization, where the optimal
solution of the relaxation is only infeasible in the original problem
when integer variables take fractional values, in nonlinear optimiza-
tion, infeasibilities may also be due to continuous variables violating
constraints that have been relaxed. We must keep in mind that the
termination criterion for the proposed strategy is achieving a
sufficiently small optimality gap. A tight CMILP formulation capable
of providing high-quality lower bounds plays a major role in the
performance of the algorithm. Recall that eq 4 is the only equation of
OMINLP that is relaxed to build CMILP. Hence, by deriving a tight
approximation of the logarithmic function therein, it is possible to
determine tight bounds on the global optimal solution of OMINLP.
The proposed method branches on the velocities vr|r ∈ rlin. This is a
common feature with the reduced space B&B57 that only branches
on a subset of variables. With this strategy, the linear estimators (i.e.,
piecewise linear functions and hyperplanes) concentrate on the
lower region of the branching velocity in the left-hand descendant
subproblem and in the upper region of the velocity in the right-hand
one. This improves the quality of the relaxation without increasing
the number of variables and the associated complexity.
At each node, the algorithm branches on one single velocity.

Our branching strategy consists of branching on the velocity
term with the worst relaxation (i.e., the one for which the
difference between the solutions of the relaxed and original
problem takes a maximum value). Let vCMILPk*

be the vector
containing the value of the p velocities vr in the optimal solution
of subproblem CMILPk and vOMINLPk*

be the equivalent vector
for subproblem OMINLPk. The branching velocity in node k is
that with the largest distance between its optimal value in the
original problem and the relaxation:

rk ¼ arg max
r ∈ rlin

ðabsðvCMILPk
�

r - vOMINLPk
�

r ÞÞ ð35Þ
If no optimal solution to OMINLPk is avaiblable (i.e.,

OMINLPk was found infeasible in a local search), the branching
velocity is selected with the same equation but vr

OMINLPk*

is then
calculated as a function φ of the optimal values of kr

CMILPk*

and
xCMILPk*

:

vOMINLPk
�

r ¼ φðkCMILPk
�

r , xCMILPk
�
Þ

¼ expðkCMILPk
�

r Þγr
Yn þ m

j¼ 1

expðxCMILPk
�

j Þfrj ð36Þ
Another important consideration when branching is the

selection of the branching point, that is, the point in which the

domain of the branching velocity will be split. One possible
strategy consists of using the optimal solution to CMILPk,
vr
CMILPk*

, as the branching point. From numerical examples, we
found that this strategy usually led to large CPU times, mainly
because it produces the same solutions in both descendant
nodes. In contrast, allocating this point close to one of the
extreme points of [vr

LB,k,vr
UB,k] is likely to produce a very easy

subproblem and a very hard one. The same applies to the rule
presented in ref 57, where the branching point is selected as vr

br,k =
0.9vr

LB,k þ 0.1vr
UB,k if vr

OMINLPk* e vr
mid,k (with vr

mid,k = (vr
LB,k þ

vr
UB,k)/2) and vr

br,k = 0.1vr
LB,k þ 0.9vr

UB,k otherwise. Another
alternative, perhaps the most intuitive one, is using the bisecting
rule, in which the interval is divided by its mid point, vr

mid,k.
Particularly, we have obtained the best performance of the
algorithm by applying one of the strategies presented in ref 82.
This strategy relies on using a convex combination between the
optimal solution vr

OMINLPk* and the midpoint of the interval vr
mid,k,

as illustrated by eq 37:

vbr, kr ¼ 0:5vOMINLPk
�

r þ 0:5vmid, kr ð37Þ
Again, if vr

OMINLPk* is not available, it is calculated as in eq 36. With
this strategy, we concentrate the efforts around the optimal
solutionwithout compromising the balance between the complex-
ity of the two subproblems.
4.2.2. Bound Contraction and Interval Analysis. The quality

of the OLB strongly depends on the bounds imposed on the
variables.40 These bounds can be tightened during the performance
of the algorithm using bound contraction techniques. In general, we
can distinguish between two lines of bound tightening procedures:
optimality-based bounds tightening (OBBT55,58,83-87) and feasibil-
ity-based bounds tightening (FBBT55,66,83,87-91).
OBBT derives tight bounds for n variables by solving 2n

optimization problems, where each of the n variables is mini-
mized and maximized subjected to the problem constraints.
When n is large, this procedure becomes time-consuming.
Consequently, OBBT is typically performed only in the root
node prior to the global optimization procedure.84 We imple-
ment the same strategy, using OBBT to improve the bounds of
the p velocities vr by solving subproblems OBLB and OBUB:

ðOBLBÞ for every r : min νr
s:t: eqs 1; 11; 12; 18; 23 and 26-34

ðOBUBÞ for every r : max νr
s:t: eqs 1; 11; 12; 18; 23 and 26-34

To avoid cutting off feasible values of vr, we use the linear
relaxation CMILP to generate bounds on the variables. For those
cases in which the computational burden of model OBLB/UB is
large or the number of velocities is particularly high, we can relax
the integer variables in these subproblems in order to expedite
their solution. Note that this is done at the expense of obtaining
weaker bounds for the velocities.
On the other hand, FBBT inherits the knowledge from recursive

arithmetic intervals47 in order to infer new bounds for the variables
from the information provided by the problem constraints. Every
time we branch in a node k, we modify the bounds for the branching
velocity in the descendant subproblems as follows:

vUB, k þ 1
r ¼ vbr, kr ð38Þ

vLB, k þ 2
r ¼ vbr, kr ð39Þ
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where kþ 1 and kþ 2 denote the left-hand side and right-hand side
subproblems, respectively. Consider a hypothetical metaboliteXa for
which the mass balance is described as follows:

dXa

dt
¼ 0 ¼ 2v1 þ v2 - 3v3 ð40Þ

From this equation, we know that v1
LB g (3v3

LB - v2
UB)/2 and

v1
UBe (3v3

UB- v2
LB)/2. Similar expressions can be derived to get

bounds on v2 and v3. These equations improve the effect of the
branching strategy by generating tighter bounds for variables
others than the one on which we have branched. In general, the
following expressions hold:

vLB, ir ¼ ∑
r0

����� μir0
-μir

� �
> 0

μir0
-μir

vLBr þ ∑
r0

����� μir0
-μir

� �
< 0

μir0
-μir

vUBr

r0 6¼ r i ¼ 1, :::, n ð41Þ

vUB, ir ¼ ∑
r0

����� μir0
-μir

� �
> 0

μir0
-μir

vUBr þ ∑
r0

����� μir0
-μir

� �
< 0

μir0
-μir

vLBr

r0 6¼ r i ¼ 1, :::, n ð42Þ
Note that each mass balance equation in which velocity r
participates can potentially lead to new tighter bounds. To
account for this, we introduce the index i in the bounds vr

LB,i

and vr
UB,i. The bounds obtained in each equation are finally

compared in order to keep the tightest one:

vLBr ¼ maxðvLB, oldr , max
n

i¼1
ðvLB, ir ÞÞ ð43Þ

vUBr ¼ minðvUB, oldr , min
n

i¼ 1
ðvUB, ir ÞÞ ð44Þ

Since during the FBBT procedure bounds may be updated, it
may be worth it to repeat the process recursively in order to
obtain tighter bounds. It is convenient to consider an iteration

limit on the number of times that the procedure is performed.
More sophisticated criteria (e.g., repeating the FBBT until the
best improvement falls below a given tolerance) can also be used.
It is known that FBBT provides weaker bounds than OBBT.63

However, it tends to be faster. One of the main advantages of
FBBT is that it can detect infeasible subproblems prior to their
optimization. A subproblem k is infeasible when vr

LB,k > vr
UB,k

for at least one r:

$rjvLB, kr > vUB, kr f OMINLPk ¼ φ ð45Þ
OBBT and FBBT are thus valuable techniques for expediting the
overall performance of the algorithm.
4.2.3. Strengthening Cuts. A special type of linear cuts that

tighten the relaxation of OMINLP can be derived from the
stoichiometric coefficients that relate the p velocities in the mass
balance of every dependent metabolite i. Let us consider the
example introduced in the previous section. Two cuts can be
deduced from eq 40 as follows:

v3 g
2v1
3

ð46Þ

v3 g
v2
3

ð47Þ

In general, from any mass balance equation associated with
metabolite i with p(i) velocities in which only one μir has a
different sign than the remaining ones (i.e., $r|μirμir0 < 0 "r 6¼
r0∧μir0μir0 0 > 0 "r0, r00 6¼ r, r0 6¼ r00), it is possible to generate
p(i) - 1 strengthening cuts according to eq 48:

vr g
μir0
-μir

vr0 " i, r0j $ rjμirμir0 < 0 " r 6¼ r0 ∧ μir0μir00 > 0

" r00 6¼ r, r0 ð48Þ
These inequalities can be obtained offline and added to CMILP
before the optimization takes place. A major advantage of these
cuts is that we can easily linearize them by applying the
exponential transformation described before. Particularly, if we
introduce eq 4 into eq 48 and replace the original Xi and Kr as

Figure 2. Scheme of sBB partitioning procedure. Solution OSk* belongs to the feasible space of subproblem OMINLPkþ1.

UNIVERSITAT ROVIRA I VIRGILI 
GLOBAL OPTIMIZATION APPLIED TO KINETICMODELS OF METABOLIC NETWORKS 
Carlos Pozo Fernández 
Dipòsit Legal: T.1469-2012 
 



5232 dx.doi.org/10.1021/ie101368k |Ind. Eng. Chem. Res. 2011, 50, 5225–5238

Industrial & Engineering Chemistry Research ARTICLE

described in eqs 15 and 16, we obtain eq 49:

ðexp krÞγr
Yn þ m

j¼1

ðexp xjÞfrj g
μir0 ðexp k

0
rÞγr0

Qn þ m

j¼ 1
ðexp xjÞfr0 j

-μir

ð49Þ

We can linearize these equations by taking logarithms in both
sides of the inequality, similarly as we did in eq 18:

kr þ lnðγrÞ þ ∑
n þ m

j¼ 1
frjxj g lnðμir0 Þ þ kr0 þ lnðγr0 Þ

- lnð- μirÞ þ ∑
n þ m

j¼1
fr0 jxj ð50Þ

Note that the introduction of strengthening cuts does not require
the addition of auxiliary variables in the model.
4.2.4. Bound Inheritance. In sBB algorithms, most of the time

is spent in solving the lower bounding problem and identifying a
good incumbent for CMILPk. The customized sBB algorithm
incorporates a strategy devised to alleviate the effect of this
limitation.
Let OSk* be the optimal solution of subproblem OMINLPk. If

none of the pruning criteria are met in this node, two descendant
subproblems, OMINLPkþ1 and OMINLPkþ2, will be created.
Solution OSk* must be feasible for at least one of these subpro-
blems (see Figure 2). Let us assume, without loss of generality,
that OSk* belongs to the feasible space of OMINLPkþ1. Hence,
we can obtain a good incumbent for CMILPkþ1 by expressing

Figure 3. Citric acid production in Aspergillus niger. Adapted from ref 67. Dependent metabolites are highlighted.
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OSk* in the space of variables of the linear relaxation. We
accomplish this by applying a logarithmic transformation on
the continuous variables, and by fixing the values of the binary
variables according to the intervals of the piecewise approxima-
tion in which the original solution has fallen. This provides an
integer feasible solution that is used as a starting value for the
B&B solvers, thereby expediting the solution of the lower
bounding problem in node k þ 1. Note that this initialization
scheme is only applicable to one descendant node.

5. COMPUTATIONAL RESULTS

The problem selected for testing the capabilities of our
customized sBB algorithm is the maximization of the citric acid
production in Aspergillus niger (see Figure 3). On the basis of the
results of Polisetty et al.67 and Pozo et al.,68 we solve several
instances of OMINLP, which differ in the number of reactions
(ME) allowed for simultaneous modification. We assume that
the 60 reactions included in themodel can bemodified by genetic
manipulation. Note, however, that any practical solution should
consider only a limited number of changes. In this specific case,
Polisetty et al.67 showed that by manipulating only 5 enzymes, it
is possible to attain a solution close to the one found when all of
the enzymes can be modified.

Here, we take the results from Pozo et al.68 as a reference for
comparison purposes. We focus on optimizing the system when
only one, two, three, or five enzymes can bemodified (case B,ME
= 1; case C, ME = 2; case D, ME = 3; and case E, ME = 5). The
nomenclature is the same used in Pozo et al.68 The cases
discussed in Table 8 of that paper are used to test the perfor-
mance of the novel sBB method. A total of eight instances are
solved with the customized sBB approach (see Tables 1 and 2).
In all these cases, those enzymes that are not allowed for
modification are fixed to their basal state. The maximum change

for each enzyme is 5 fold over its basal state. The optimization
constraints are the same as in the referenced paper.

Our results are compared with those obtained by the OA
technique introduced by the authors in an earlier work21,68 and
also with the global optimization package BARON. With regard
to the sBB andOAmethods, it should be noted that both of them
solve iteratively the same subproblems: the MILP-based relaxa-
tion CMILP and the bounded OMINLP. From numerical
examples, we observed that both algorithms worked better when
the binary variables associated with the genetic manipulations of
the enzyme levels are fixed in the original problem according to
the output of the linear MILP relaxation. For this reason, the
lower bounds are generated by solving a bounded NLP instead of
a boundedMINLP. [Note that the optimization task is posed as a
maximization problem, so CMILP predicts upper bounds on the
global optimum of OMINLP.]

In all of the examples, we used CPLEX 11.2.1 as MILP solver
and CONOPT 3.14s for the NLPs, whereas BARON v.8.1.592

was employed to solve the full-space OMINLP problems. The
algorithms were implemented in GAMS 23.0.2 on an Intel 1.2
GHzmachine. An optimality tolerance of 2.00%was fixed in all of
the cases.

The performance of the sBB algorithm depends on a series of
factors that can be configured at will. The ones with the highest
influence are the branching rule, the CPLEX tolerance, the stop
criterion for the FBBT procedure, the selection of the branching
point, the number of supporting hyperplanes, and the number of
piecewise intervals. The particular configuration of the algorithm
chosen to perform the calculations is given in Table 3. The only
parameter that was particularly tuned for every single instance
being solved was the number of piecewise intervals. The results
obtained with the aforementioned sBB configuration are shown
in Table 4, which also summarizes the performance of the other
methods. Recall that the optimal solution reported corresponds
to the best solution provided by the lower bounding problem
when the termination criterion was met. Note also that all of the
algorithms are compared on the basis of the CPU time required
to attain a solution with an optimality gap of 2.00%. This is the
same comparison criterion used in Pozo et al.68 Other criteria
could have been used instead. Nevertheless, we observed that the
conclusions of the analysis are very similar for all of the cases.

As can be seen, the proposed methodology can solve all of the
instances within the required tolerance. The same occurs with
the OA, whereas BARON was not able to improve the starting
point (which corresponds to the basal state solution) even after
3600 s of CPU time. This might be due to the use of generic
techniques for building the relaxed upper bounding problem
(when maximizing) that do not benefit from the particular
structure of the GMA formalism.

The number of nodes explored in the sBB tree varies from one
example to another without any clear tendency. However, the
node in which the optimal solution is found is generally very close
to the root node (20 first nodes) in all the instances except C1

Table 1. Size of Citric Acid Models after Preprocessinga

OMINLP CMILP

case equations CV IV PW0 equations CV IV

B1 692 448 3 12 5339 1072 924

B2 692 448 3 10 5111 958 810

C1 692 445 6 10 5111 958 810

C2 692 445 6 30 7451 2098 1890

D1 692 442 9 15 5681 1243 1095

D2 692 442 9 10 5111 958 810

E1 692 436 15 12 5339 1072 924

E2 692 436 15 15 5681 1243 1095
aOMINLP: full-space problem. CMILP: MIP relaxation of OMINLP.
CV: number of continuous variables. IV: number of integer variables.
PW0: number of piecewise sections in the initial iteration of the
algorithm.

Table 2. Enzymes That Can Be Modifed in Each of the
Instances of OMINLP

case ME subcase

modifiable

enzymes case ME subcase

modifiable

enzymes

B 1 1 [40] D 3 1 [1, 40, 60]

2 [59] 2 [1, 40, 59]

C 2 1 [40, 59] E 5 1 [1, 39, 40, 59, 60]

2 [1, 40] 2 [1, 28, 40, 59, 60]

Table 3. Parameters Setting in the sBB Algorithm

parameter configuration

node selection highest LB

CPLEX tolerance 0.00%

FBBT stop criterion 10 iterations

number of hyperplanes 50

branching point selection see eq 37
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(244). This is in consonance with the common observation that
B&B algorithms may take a long time to verify optimality,
although good (sometimes optimal) solutions are usually found
in the early stages of the search.48

Regarding the optimal number of piecewise intervals, they
range between 10 and 15. In only one case (C2) did the
customized sBB perform better with a larger number of piecewise
terms (i.e., 30). In contrast, in the OA, the optimal number of
initial piecewise terms is small on average (i.e., 4), and even in the
worst case, the algorithm works better with fewer intervals (i.e.,
9) than in any instance of the sBB. Recall that, in each iteration of
the OA algorithm, the total number of piecewise sections is
increased by one, as the interval containing the optimal solution
of CMILP is split into two subintervals. Since there is a binary
variable associated with each of these new intervals, starting with
too many sections is likely to lead to large instances that are hard
to solve in short CPU times.

On the other hand, the final number of piecewise sections
required by the OA exceeds the piecewise terms used in the sBB
in all of the cases except two (i.e., C2 and E1). Let us note that in
the OA method, the number of piecewise intervals is progres-
sively increased to construct tighter relaxations, whereas in the
customized sBB, bound tightening techniques and tailored
branching rules allow reducing of the search space while keeping
the number of piecewise terms constant in each subproblem.
Henceforth, the sBB can produce a relaxation as tight as that of
the OA with fewer piecewise sections.

With regard to the CPU time, the OA proved to be faster on
average (177s compared to 253s). Specifically, it performed
better than the sBB in more instances (6 vs 2). The reason for
this to happen might be that at each iteration of the OA, we
tighten the relaxation of the logarithm of all the velocities |rlin|,
whereas in the sBB, only one velocity is tightened at each
branching point of the tree. This leads to more nodes and hence
large CPU times. This finally results in a faster convergence of the
lower and upper bounds in the case of the OA.

The customized sBB algorithm proved to be significantly
faster than the OA in the two most difficult instances (i.e., those
with a higher number of manipulations allowed). It should be
noted that these results may vary according to the settings of each
algorithm.

In order to better explore the advantages of the proposed
method, we also solved instances of cases B, E, and F (the latter

corresponding to ME = 4), where the best combination of
enzymatic manipulations is searched. In these computations,
no binary variables are fixed prior to the optimization. This
exercise attempts to mimic the search for an optimal genetic
modification in a biotechnological application.

As can be seen in Table 5, the solution identified for case B by
both algorithms corresponds to the one obtained in case B1 (see
Table 4). The same occurs with the solution obtained by the sBB
for case E, which is the same as that of case E1. In contrast, the
solution of case E found with the OA corresponds to a different
combination of enzymes that leads to a lower (i.e., worse) value
of the objective function. Solutions found forME = 1 andME = 5
did not improve those already reported in Polisetty et al.67 and
Pozo et al.68 On the other hand, the solution obtained for case F,
which implies modifying four enzymes, is indeed very close to the
one found when all the enzymes are allowed to change. In
addition, this solution can be attained modifying different
combinations of enzymes.

Regarding the performance of the algorithms, both of them
were capable of finding solutions with low optimality gaps in all
of the instances, showing the sBB method the best performance.
These results are partly due to the bound tightening techniques
discussed in section 4.2.2, which were not included in the OA
proposed in Pozo et al.68 For instance, note that the customized
sBB identifies the global optimum of cases E and F in just one
node using 11 and 12 piecewise intervals respectively. One could
think that the same result could be obtained with the OA using
the same number of piecewise sections. However, when no
bound contraction is performed, this setup does not allow for
attaining the specified tolerance in one iteration of the OA
algorithm. In fact, with this number of initial piecewise terms,
the algorithm shows a worse performance than with 4 intervals (i.
e., the final CPU times exceed those reported in Table 5 for four
initial sections).

These results also indicate that good/optimal solutions can be
found in the early stages of the search. Note that the global
optimum of case B is identified in node 238 with sBB, but a
solution with an optimality gap of 3% is found in node 1. This can
be better seen in Figure 4: solutions very close to the global
optimum are identified in the very first seconds of the execution
of the algorithms, while the remaining time is spent in reducing
the optimality gap. Particularly, the OA provides smaller optim-
ality gaps than the sBB in the beginning of the search (i.e., in the

Table 4. Comparison between the Best Results Obtained with the OA and the Customized sBB for Each Instancea

sBB BARON OA

case PW0
b nodes NO LB UB CPU LB UB CPU PW0 PWf LB UB CPU

B1 12 34 10 25.82 26.05 36 12.36 -c 17 3 12 25.82 26.33 17

B2 10 198 12 12.37 12.57 229 12.36 - 9 3 15 12.35 12.51 45

C1 10 298 244 25.83 26.34 368 12.36 - 13 3 16 25.78 26.14 53

C2 30 26 15 25.82 26.34 61 12.36 - 39 3 12 25.82 26.33 18

D1 15 340 1 40.88 41.59 1155 12.36 - 52 3 18 40.88 41.42 167

D2 10 42 18 176.8 179.87 35 12.36 176.79 3600 3 12 176.79 180 18

E1 12 1 1 347.92 353.22 1 12.36 347.93 3600 7 9 347.93 353.35 6

E2 15 32 1 256.59 261.68 83 12.36 256.68 3600 3 18 256.59 261.32 1093
a PW0: number of piecewise sections in the initial iteration of the algorithm. PWf: number of piecewise sections in the last iteration of the algorithm. NO:
node in which the optimal solution was found. LB: lower bound on the global optimum in mMmin-1. UB: upper bound on the global optimum in mM
min-1. CPU: CPU time in seconds. bNote that for the sBB algorithm, PW0 = PWf as the number of piecewise sections is not modified throughout the
algorithm. cBARON failed to provide a rigorous upper bound in cases with -.
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first 300s). At this point, the tendency changes and the sBB
shows better performance. This is due to the increase in the
number of binary variables and hence in the complexity of the
MILP subproblems solved by the OA. In contrast, the size of the
MILP subproblems calculated in the sBB is kept constant in the
nodes of the tree.

6. CONCLUSIONS

This paper has addressed the global optimization of metabolic
networks described through the GMA formalism. A customized
sBB algorithm that benefits from the specific structure of this
type of model has been presented for this purpose. The
optimization task was posed as a nonconvex MINLP in which
integer variables denote the number of manipulations allowed.
Tight bounds on the global optimum were obtained by con-
structing a linear MILP-based relaxation that exploits the math-
ematical structure of the GMA formalism. The method
incorporates branching rules and bound contraction strategies
devised to expedite the overall solution procedure.

Our strategy was compared against an outer approximation
(OA) algorithm and the global optimization package BARON.

Numerical results showed that the first two methods outper-
formed BARON in all of the instances under study. This is due to
the quality of the MILP-based relaxation that is obtained by
performing a logarithmic transformation on the power-law
equations and approximating them by under- and overestima-
tors. We also observed that none of these two methods (sBB and
OA) proved to be superior in all of the cases. Nevertheless, the
sBB showed a better performance in the most complicated
instances, which is probably due to the ability of this strategy
to reduce the problem domain without increasing the number of
variables. Problems with a similar structure (i.e., with a large
number of sigmoidal terms) may also benefit from the proposed
strategy. Future work will focus on devising systematic tuning
strategies that will improve the performance of the customized
sBB algorithm.

The results obtained clearly show that we can tackle problems
of moderate complexity when expressed as GMA models. One
difficulty encountered when addressing the global optimization
of complex metabolic networks is the current limited biological
knowledge of some of these systems. While stoichiometric
models can easily be constructed, GMA models require

Table 5. Comparison between the Best Results Obtained with the Customized sBB and the OA for Each Instancea

sBB OA

case PW0
b nodes NO OE Kr LB UB CPU PW0 PWf OE Kr LB UB CPU

B 3 296 238 [40] [5.00] 25.82 26.25 484 2 12 [40] [5.00] 25.82 26.19 864
E 11 1 1 [1, 39, 40, 59, 60] [1.40, 0.92, 5.00, 5.00, 1.07] 347.92 353.81 91 4 7 [28, 39, 40, 59, 60] [1.13, 1.45, 5.00, 5.00, 1.05] 347.26 353.75 203
F 12 1 1 [1, 39, 40, 59] [1.23, 0.88, 5.00, 5.00] 347.25 351.41 50 4 7 [39, 40, 55, 59] [1.53, 5.00, 1.10, 5.00] 347.26 351.71 78

a PW0: number of piecewise sections in the initial iteration of the algorithm. NO: node in which the optimal solution was found. OE: enzymes r being
modified in the optimal solution of the instance. Kr: optimal fold-change in activity of enzyme r. LB: lower bound on the global optimum in mMmin-1.
UB: upper bound on the global optimum in mM min-1. CPU: CPU time in seconds. PWf: number of piecewise sections in the last iteration of the
algorithm. bNote that for the sBB algorithm, PW0 = PWf as the number of piecewise sections is not modified throughout the algorithm.

Figure 4. Evolution of the lower and the upper bounds of the global optimum of case B for the OA and the sBB algorithms.
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additional information that may not be available for large models.
Although detailed GMA genome-wide models are far in the
future, our results show that it is worth it to collect the required
information, as we are able to obtain optimization results that go
beyond those possible with stoichiometric models.
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’NOMENCLATURE

Indexes
h = interval of the piecewise underestimation of the logarithm

function
i = dependent metabolite
j = metabolite (dependent or independent)
l = supporting hyperplane
r = = flow, process, velocity

Sets
rlin = set of processes r whose kinetic equations are linearized

Variables
Kr = fold-change in the basal state activity of enzyme governing

process r
kr = logarithm of the fold change in the basal state activity of

enzyme governing process r
Kr1 = auxiliary disaggregated variable associated with process r
Kr2 = auxiliary disaggregated variable associated with process r
Kr3 = auxiliary disaggregated variable associated with process r
t = = time
vr = velocity of process r
vhr

h = disaggregated variable associated with the hth term of the
convex hull reformulation of the piecewise underestimator
of velocity r

Xi = concentration of metabolite i
xi = logarithm of the concentration of metabolite i
yr1 = binary variable associated with the first term of the convex

hull of the disjunction of process r
yr2 = binary variable associated with the second term of the

convex hull of the disjunction of process r
yr3 = binary variable associated with the third term of the convex

hull of the disjunction of process r
zr
h = binary variable associated with the hth term of the convex

hull of the piecewise underestimation of velocity r

Parameters
δ = sufficiently small parameter
γr = basal state activity of enzyme governing process r
μir = stoichiometric coefficient of process r in the mass balance of

metabolite i
ar
h = slope of the segment used in interval h of the piecewise

approximation of velocity r
br
h = vertical axis intercept of the segment used in interval h of the

piecewise approximation of velocity r
frj = kinetic order of metabolite j in process r
H = total number of intervals in the piecewise underestimator of

the logarithmic function
Kr
LB = lower bound on the fold change in the basal state activity of

enzyme governing process r
Kr
UB = upper bound on the fold change in the basal state activity

of enzyme governing process r
L = total number of supporting hyperplanes (linearization

points)
m = total number of independent metabolites
ME = maximum number of enzymes allowed for modification
n = total number of dependent metabolites
p = total number of flows (processes) involved in the metabolic

network under study
p(i) = total number of flows (processes) involved in the mass

balance of metabolite i
vr
h = lower limit of interval h in the piecewise underestimator of

velocity r
vr
hþ1 = upper limit of interval h in the piecewise underestimator of

velocity r
vr
LB = lower bound on velocity r
vr
UB = upper bound on velocity r
Xi
LB = lower bound on the concentration of metabolite i

Xi
UB = upper bound on the concentration of metabolite i
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a b s t r a c t

Cells are natural factories that can adapt to changes in external conditions. Their adaptive responses to
specific stress situations are a result of evolution. In theory, many alternative sets of coordinated changes
in the activity of the enzymes of each pathway could allow for an appropriate adaptive readjustment
of metabolism in response to stress. However, experimental and theoretical observations show that
actual responses to specific changes follow fairly well defined patterns that suggest an evolutionary
optimization of that response. Thus, it is important to identify functional effectiveness criteria that may
explain why certain patterns of change in cellular components and activities during adaptive response
have been preferably maintained over evolutionary time. Those functional effectiveness criteria define
sets of physiological requirements that constrain the possible adaptive changes and lead to different
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esign principles
peration principles

operation principles that could explain the observed response. Understanding such operation principles
can also facilitate biotechnological and metabolic engineering applications. Thus, developing methods
that enable the analysis of cellular responses from the perspective of identifying operation principles may
have strong theoretical and practical implications. In this paper we present one such method that was
designed based on nonlinear global optimization techniques. Our methodology can be used with a special
class of nonlinear kinetic models known as GMA models and it allows for a systematic characterization

reme
of the physiological requi

. Introduction

Cells are natural factories that can adapt to changes in external
onditions (Causton et al., 2001; Gasch et al., 2000; Mitchell et al.,
009). Their adaptive responses are a result of evolution through
ifferent mechanisms that include random mutation, gene duplica-
ion, gene transfer, etc. (Koonin, 2009). During steady-state growth
onditions, the cell works within normal operating ranges that are
haracterized by fluxes and metabolite levels moving within more
r less narrow ranges (Watson, 1970; Wiebe et al., 2008).

As the conditions in the medium change, the operating range
f cells may also change. If environmental changes are spurious,
here are internal control mechanisms that play a fundamental

ole in maintaining the operating range of cells about its initial
alue. However, when the environmental changes are relevant or
ustained, an adaptive response is mounted by the cells. Such adap-
ive responses occur during heat shock, oxidative stress, or other

∗ Corresponding author. Tel.: +34 608533249; fax: +973702426.
E-mail address: albert.sorribas@cmb.udl.cat (A. Sorribas).

168-1656/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.jbiotec.2010.01.026
nts that may underlie the evolution of adaptive strategies.
© 2010 Elsevier B.V. All rights reserved.

stresses. If those situations are prevalent in the evolutionary history
of the cell, specific behaviors and mechanisms that facilitate cell
adaptation through changes in gene expression and protein activ-
ity and assure cell viability are selected for. Such behaviors lead
to a fine tuning of metabolic fluxes and concentrations (Vilaprinyo
et al., 2006). The specificity of the adaptive response mounted by
each cell type in response to a given stress depends both on the
challenges it responds to and on the evolutionary history of the
cell or organism (Bedford and Hartl, 2009; Kashiwagi et al., 2006;
Teusink et al., 2009; Wilkins, 2007).

For example, the heat shock caused by a sudden rise in the
temperature of the growing media triggers an ordered response
in yeast that causes an arrest in cell cycle and specific changes
in the coordinated activity of several metabolic pathways (Trotter
et al., 2001). These changes help the cell to synthesize protec-
tive molecules that permit its adaptation and survival (Causton

et al., 2001; Eisen et al., 1998; Gasch et al., 2000; Jenkins, 2003).
In principle, many alternative sets of coordinated changes in the
activity of pathways could allow for an appropriate adaptive read-
justment of metabolism. However, experimental and theoretical
measurements of the actual responses show that these follow fairly

http://www.sciencedirect.com/science/journal/01681656
http://www.elsevier.com/locate/jbiotec
mailto:albert.sorribas@cmb.udl.cat
dx.doi.org/10.1016/j.jbiotec.2010.01.026
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fold changes in enzyme activities. For this vector, the change in the

1 Enzyme activities can be explicitly included in the model as independent vari-
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ell defined patterns that are consistent with an evolutionary
ptimization of this response with respect to different physiolog-
cal and functional effectiveness criteria (El-Samad et al., 2005;
urata et al., 2006; Molina-Navarro et al., 2008; Vilaprinyo et al.,
006). Thus, it is important to identify functional effectiveness cri-
eria that may explain why certain patterns of change in cellular
omponents and activities during adaptive response have been
referably maintained over evolutionary time (Coelho et al., 2009;
an, 2008; Salvador and Savageau, 2003, 2006; Savageau, 1971,
974a,b, 1976; Savageau et al., 2009). Such criteria are necessar-

ly derived from the analysis of systemic properties that emerge
rom the integrated molecular behavior of the cellular components,
nd they may include robustness, dynamic stability, minimiza-
ion of intermediates, minimization of biosynthetic cost, temporal
esponsiveness, etc. (Chang and Sahinidis, 2005; Coelho et al., 2009;
alvador and Savageau, 2003, 2006; Savageau et al., 2009). The
unctional effectiveness criteria for a response define sets of phys-
ological constraints that shape that response and lead to different
peration principles that could explain why the cells adapt in a cer-
ain way at the molecular level (Bedford and Hartl, 2009; Braunstein
t al., 2008; Vilaprinyo et al., 2006; Voit and Radivoyevitch, 2000;
oit, 2003).

Although the operational principles of cellular responses are
result of evolution, they can be applied to and validated in

iotechnological applications. Metabolic engineering manipulates
aturally evolved organisms in order to obtain increased amount
f new products (Bailey et al., 1990, 1996; Bailey, 1991, 1999, 2001;
atzimanikatis and Liao, 2002). This manipulation often involves a
rocess of optimization that searches for the best modified strain
ith respect to the initial optimization criteria (Goodman, 2008).

hus, developing methods that permit analysis of cellular responses
rom the perspective of identifying operational principles may have
trong theoretical and practical implications. Often, this goal can
nly be achieved through methods that involved the creation, anal-
sis and comparison of mathematical models for the processes and
esponses one is interested in studying (Alvarez-Vasquez et al.,
004; Klipp et al., 2005; Sims et al., 2004; Voit, 2003).

In this work, we discuss and extend a method that can be
sed to identify and study the operation principles of cellular
esponse at the molecular level, by characterizing feasibility regions
or those responses (Guillén-Gosálbez and Sorribas, 2009; Pozo
t al., submitted for publication). Such feasibility regions encom-
ass all possible ranges in enzyme activity that allow for an
ppropriate response by the cell after an environmental chal-
enge. This method may help in both, understanding the evolution
f such responses and guiding manipulations of gene expression
n metabolic engineering applications. The proposed method for
dentifying feasibility regions uses a recently developed global opti-

ization method (Guillén-Gosálbez and Sorribas, 2009; Pozo et
l., submitted for publication). Here, the capabilities of that opti-
ization method are enhanced through an iterative and systematic

earch strategy that identifies all the parameter regions contain-
ng admissible solutions that are compatible with the considered
hysiological constraints. The general framework presented here
as the potential for solving problems of great interest in systems
iology studies. As an example we analyze a mathematical model
reated to represent the heat shock response of the yeast Saccha-
omyces cerevisiae.

. Methods
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.1. Generalized Mass Action models

Generalized Mass Action (GMA) models are a special class of
odels defined within the general framework of Biochemical Sys-

ems Theory (BST) (Voit, 2000). These models use the power-law
nology 149 (2010) 141–153

formalism to obtain a representation of the different processes
involved in the target system. For a network with p processes
(enzyme reactions, transport systems, etc.), n internal metabolites,
and m external parameters or independent variables, a GMA model
is defined as follows:

dXi

dt
=

p∑
r=1

�irvr =
p∑

r=1

�ir

⎛
⎝�r

n+m∏
j=1

Xfrj
j

⎞
⎠ i = 1, . . . , n (1)

In Eq. (1), the parameters �ir account for the stoichiometry of
the process, i.e. the number of molecules of Xi produced by or used
in reaction vr (for instance +1, +2 for production, or −1, −2, etc.,
for degradation). The parameters of the power-law representation
of each reaction are the apparent rate-constant � r and the kinetic-
order fir, defined as (Savageau, 1969a,b, 1976):

fir =
(

∂vr

∂Xi

)
0

Xi0

vr0
(2)

The subscript 0 stands for the operating point where the power-
law representation is derived. Appropriate parameter values for a
given system can be estimated using different procedures. As this is
a broad subject, the reader is referred to the recent review by Chou
and Voit (2009). In the following, we shall assume that a parameter
set has been obtained and that the GMA model can be used for
characterizing the properties of the system.

GMA representations integrate information about network
stoichiometry and regulation (kinetic-orders) into a dynamic math-
ematical model. These models can be used for computing both the
transient and steady-state responses of metabolites and fluxes to
changes in the environment of the model. Due to their structure and
to the available methods, GMA models are well suited for evaluating
parameter sensitivities and for developing optimization techniques
(Chang and Sahinidis, 2005; Marin-Sanguino et al., 2007; Polisetty
et al., 2008; Torres et al., 1996, 1997; Voit, 1992). Thus, that rep-
resentation is especially useful as a framework for systems biology
applications and provides a description of processes that is more
accurate than the one provided by other techniques based on the
stoichiometric matrix alone, such as Flux Balance Analysis (FBA)
(Lee et al., 2006). This added accurateness comes at the price of
needing more information to estimate parameter values for GMA
models.

2.2. Characterization of the effect of changes in enzyme activities

Given a GMA model, changes in enzyme activities can be imple-
mented by changing the value of the rate-constant for the processes
in which the enzymes are involved.1 For simplicity, we can write

dXi

dt
=

p∑
r=1

�irvr =
p∑

r=1

�ir

⎛
⎝kr�r

n+m∏
j=1

Xfrj
j

⎞
⎠ i = 1, . . . , n (3)

where kr indicates the change-fold over the original enzyme activ-
ity (which is � r). Thus, in the reference state, kr = 1. Accordingly,
a vector (k1, k2, . . . , kp) would correspond to a specific pattern of

RKS 
ables. However, for constant levels of enzyme activity, doing so is equivalent to
changing the rate-constant directly. If the model includes gene regulation and mod-
ulatory changes in protein activity, enzymes should be explicitly included as internal
variables in the model. Mimicking changes in the medium can be done either by
changing the values of an external variable or by changing the values of rate con-
stants for the processes that are responsible for sensing those changes.
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ystem steady-state can be easily computed numerically by solving
he steady-state equation

=
p∑

r=1

�ir

⎛
⎝kr�r

n+m∏
j=1

Xfrj
j

⎞
⎠ i = 1, . . . , n (4)

We shall use Eqs. (3) and (4) to analyze the effect of different
ctivity patterns on the systemic performance of the model and
valuate how this performance influences the overall physiological
utcome of the response.

.3. Criteria for functional effectiveness in cellular metabolism

Changes in the reference steady-state as a consequence of a
hange in the enzyme activity pattern can be compared to a series
f functional effectiveness criteria (Vilaprinyo et al., 2006; Voit and
adivoyevitch, 2000). Those criteria, which define the boundaries of

nternal change that the cell must go through in order to adapt and
urvive, are matched against the internal changes that are caused
y the changes in enzyme activity of a given response profile. While
ome of those criteria may be quite general, others may be case-
pecific and may have different quantitative thresholds in different
ases (Salvador and Savageau, 2003, 2006; Vilaprinyo et al., 2006).

e now briefly discuss some of the criteria that have been used
n the literature. These are useful for discussing operative ranges,
volution, and optimization of metabolic processes.

.3.1. Change in metabolic fluxes
Changes in the rate of synthesis for key metabolites are impor-

ant indices of functional effectiveness. For example, if a system
egulates production of a metabolite in response to the cellular
emand for that metabolite, an increase in the demand should lead
o an increase in the production (e.g. Alves and Savageau, 2000 and
eferences therein). The specific flux criteria are dependent on the
ystem one is interested in and should be considered in the context
f the whole system and not as isolated processes. For example, in
he adaptive response to heat shock an increase in ATP production
hat causes depletion of NADPH or a dramatic decrease in glycolytic
ux may be inappropriate in the general context of the adaptive
esponse (Vilaprinyo et al., 2006).

In GMA models, steady-state fluxes can be easily computed for
ach condition using the following equation

rss = kr�r

n+m∏
j=1

Xfrj
jss

r = 1, . . . , p (5)

here subscript ss indicates the relevant steady-state values corre-
ponding to the new conditions. As stated before, the steady-state
olution for metabolites can be obtained by numerically solving Eq.
4).

In larger networks that involve different branch points and reg-
latory effects, it is possible to obtain similar increases in a given
et of fluxes with different patterns of modified enzyme activities.
hus, this criterion, by itself, will seldom be enough to assess the
daptive value of a set of changes and fully explain the observed
peration principles for the system.

.3.2. Metabolite accumulation
Changes in steady-state fluxes may often lead to changes in

etabolite levels. From a practical point of view, either in biotech-
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ological applications or in natural systems, one may argue that
ccumulation of intermediary metabolites may cause undesirable
ross regulation side effects and tax the finite solvability capacity
f the cell (see Alves and Savageau, 2000 and references therein).
hus, minimization of intermediate metabolite accumulation will
nology 149 (2010) 141–153 143

be typically regarded as an important effectiveness criterion of an
adaptive response, except for those cases in which metabolite accu-
mulation might play an important role (for instance accumulation
of trehalose in the heat shock response). Changes in metabolite
levels are given by the steady-state solution to Eq. (4).

2.3.3. Overall changes in enzyme activities
Changes in enzyme activity are easy to simulate. However, it is

often difficult to assess in a real situation whether those changes
are indirect and due to the modulation of either gene expression or
stability of mRNA (Garcia-Martinez et al., 2007; Romero-Santacreu
et al., 2009), or direct and due to modulator effects on the activity
of the protein. The later can arise via reversible covalent modifi-
cation of specific residues or via changes in the conformation of
the protein in response to a new set of physical chemical parame-
ters in the medium. Changes in gene expression are costly in terms
of metabolic resources (Wagner, 2005). They lead to mRNA and
protein synthesis, which are among the most expensive metabolic
activities of a cell. Thus, minimization of fold change can be con-
sidered an important functional effectiveness criterion (Raiford et
al., 2008). If one assumes that changes in protein activity during
the long term adaptive response of a cell are mostly due to changes
in gene expression then, to a first approximation, one can estimate
the cost of a given set of changes in enzyme activity by adding up all
the kr values. One possible way to account for both up- and down-
regulations consists of defining a “biological” cost of a response that
is mathematically given by

∑
∀i|ln(ki)|.

2.3.4. Parameter robustness
Parameter robustness is an important criterion as it refers to

the system’s sensitivity to slight differences in parameter values
(Aldana et al., 2007; Coelho et al., 2009; Kitano, 2004; Kitano, 2007;
Morohashi et al., 2002; Savageau, 1971). Systems with large param-
eter sensitivities may indicate the existence of processes that are
more responsive to noise. Thus, they could be considered as less
well adapted than systems that are more sensitive to parame-
ter changes. Although low parameter sensitivities may arise from
poorly identified parameters, one can argue that, in most cases, low
sensitivity is a desirable property in well-adapted systems. This cri-
terion has been extensively used in identifying design principles
and in evaluating model adequacy and behavior (Cascante et al.,
1995; Coelho et al., 2009; Curto et al., 1997; de Atauri et al., 2000;
Voit, 2000).

2.3.5. Temporal responsiveness
Temporal responsiveness is another criterion that is impor-

tant for systemic performance. Systems with inadequate temporal
responsiveness may not survive to reach a new steady state, inde-
pendently of the adequacy of their steady-state responses. In
general, evaluating this criterion requires numerical simulations,
except for the case where we are only interested in studying the
dynamics in the neighborhood of a steady-state solution. In such
a case one can linearize the system of equations about the steady
state and obtain analytical solutions for the transient behavior of
the dependent variables (Hlavacek and Savageau, 1998).

Unlike the other criteria that were discussed so far, using tem-
poral responsiveness as a criterion for optimization poses many
problems. In the context of globally optimizing metabolic systems,
there are indeed very few methods capable of handling the dynamic
constraints required to assess the temporal responsiveness. In fact,
the strategies proposed so far are only applicable to specific types of

S 
models, and usually optimization uses large amounts of CPU time,
even when tackling small problems with few variables and con-
straints (Chachuat et al., 2006; Chang and Sahinidis, 2005; Esposito
and Floudas, 2000; Papamichail and Adjiman, 2002, 2004; Singer
and Barton, 2006). This limitation can be overcome by performing
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he assessment of the temporal responsiveness in the post-optimal
nalysis of the solutions found. Hence, once a feasible solution is
dentified, the evaluation of its temporal responsiveness can add
n extra criterion for deciding the relevance of such solution. In
erms of evolution, this may be important as a given optimum can
nvolve dynamic properties that will make the solution unfeasible
n practice.

.3.6. Steady-state stability
Dynamic stability is a criterion that evaluates the ability of a

iven system for returning to a steady-state after a perturbation.
stable system can accommodate fluctuations and will be able

f maintain a reference state. Evaluation of steady-state stability
hould be a complementary criterion for testing the appropriate-
ess of a proposed change in the system (Savageau, 1974a, 1975,
998). In the optimization of metabolic systems, this criterion can
e included in the optimization model itself (Chang and Sahinidis,
005) or it can be assessed in the post-optimal analysis of the solu-
ions for Eq. (4).

. Feasibility regions in biochemical pathways: definition
nd their practical significance

.1. Definitions

A feasibility region is a region in parameter space whose inter-
al membership is defined by the sets of all parameter values that
re compatible with specific physiological constraints (Dayarian
t al., 2009; Guillén-Gosálbez and Sorribas, 2009). Here, without
oss of generality, we shall concentrate on the special case of fea-
ibility regions defined by changes in enzyme activities, that is
he set of vectors representing the fold change in enzyme activi-
ies: (k1, k2, . . . , kp), that are compatible with a set of functional
ffectiveness criteria (constraints). These functional criteria must
e assessed through mathematical models, such as the GMA rep-
esentation, that allow predicting the biological performance of
system in a specific environment. In mathematical terms, per-

orming a feasibility analysis entails conducting a systematic search
or determining the set of values of some variables of the biolog-
cal model for which the overall formulation remains feasible. In
his context, linear models usually fail to capture the whole com-
lexity of the biological system, so it is necessary to use nonlinear
ormulations.

Hence, finding the boundaries for this class of feasibility regions
equires obtaining global optimal solutions for nonlinear opti-
ization problems. One of the important limitations of standard

onlinear optimization techniques is that they cannot guarantee
he global optimality of the solutions found when they are applied
o nonlinear problems that have non-convexities. Non-convexities,
uch as bilinear terms, fractional terms, etc., are very common in
any engineering problems. In the context of our analysis, these

on-convexities arise from the kinetic equations required to link
he concentration of the metabolites with the velocities of the reac-
ions that take place in the metabolic network.

There are currently several global optimization methods that
an handle non-convex problems and provide solutions that are
lobally optimal within a desired tolerance (Tawarmalani and
ahinidis, 2002). Most of these methods are general purpose, that
s to say, they can be applied to a wide range of problems regardless
f the type of non-convexities embedded in the model. However,

ITAT ROVIRA I VIRGILI 
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heir performance can change drastically from one application to
nother depending on the specific structure of the problem to be
olved (for a detailed review of these methods see Grossman and
iegler, 2004). A possible way of expediting the search for global
olutions for nonlinear non-convex problems consists of exploiting
nology 149 (2010) 141–153

the structure of the involved non-convexities. The major classes
of non-convex problems studied so far include concave minimiza-
tion (Hansen et al., 1992) and problems with linear fractional and
bilinear terms (Quesada and Grossman, 1995), and a method for
problems with signomial parts (Porn et al., 2008). Different opti-
mization strategies have also been suggested for S-system and GMA
models within BST (Chang and Sahinidis, 2005; Hatzimanikatis et
al., 1996; Marin-Sanguino et al., 2007; Polisetty et al., 2008; Voit,
1992). Recently, a highly efficient global optimization technique for
GMA models has been developed by our group. Technical aspects
of this optimization are discussed elsewhere (Guillén-Gosálbez and
Sorribas, 2009; Pozo et al., submitted for publication). We shall use
this technique in the feasibility analysis presented here.

3.2. Characterization of feasibility regions in GMA models

The method for finding the feasibility regions was first intro-
duced by Guillén-Gosálbez and Sorribas (2009). Here, we briefly
review it and discuss the different steps and their importance.
Mainly, steps 2–3 are critical for reducing the search space and
obtain a useful result. After reviewing the method, we shall apply
it to two practical cases showing its utility both for optimization and
evolutionary studies. Finally, we shall stress the role of the set of
physiological constraints in defining the feasibility region. As stated
before, the strategy presented relies on the use of global optimiza-
tion methods that are customized for this particular application.

A feasibility region for a particular problem can be identified
through the following steps:

1. Define a set of constraints that must be fulfilled by any solu-
tion (limits for fluxes, concentrations, gene expression, etc.). At
this point, collaboration with experts in the biological problem
is fundamental.

2. Define the search space for the fold change of each enzyme. (i.e.,
the lower and upper bounds, kLO

i
and kUP

i
that define the interval

within which the fold change must fall). Based on experimental
information, one can restrict the search space for practical pur-
poses. Thus, if measurements in microarray experiments show
that during the studied response a given gene is over expressed
between 5 and 8-fold, we could consider allowing changes from
1 up to 20-fold from the basal condition for that gene. By making
the range so large, one covers for other plausible values that may
also be linked to alternative adaptive solutions.

3. Find the maximum and minimum (bound contraction) values for
changing each enzyme that are compatible with the set of con-
straints defined in 1 and with the limits established in 2. This
is achieved by defining ki as the objective function. Note that
these optimizations provide bounds for all the variables ki (i.e.,
kLO∗

i
and kUP∗

i
) that will fall within those first considered in step

2. Thus, we can assure that outside the obtained bounds for ki
no other combination of changes in the enzymes produces a
valid solution. In mathematical terms, we have that a solution
will be unfeasible if there exists at least one ki that satisfies that
ki /∈ [kLO∗

i
, kUP∗

i
].

4. Define a grid of values for each ki: (k1
i
, k2

i
, . . . , kni

i
), using

the minimum and maximum values obtained in the previ-
ous step. Typically, we have divided the allowed range in
10 sections. The bound contraction step shortens the search
region, which results in a more efficient search of the feasibility

RKS 
5. Consider a set of the hyper-rectangles, each of which is defined
by lower and upper limits imposed on the values of each ki. For
instance, a particular hyper-rectangle would be defined by fold
changes that are between 2.5 and 3.7 for enzyme 1, between 10
and 12.3 for enzyme 2, and so on.
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. Find the global optimum using any of the velocities as
the objective function. This will give a set of fold changes
(k11, k21, . . . , kp1) for which this optimum is attained. At this
stage, as the goal is to find admissible solutions, we can select any
of the velocities as the objective function. The results of the fea-
sibility analysis will be the same independently of this choice.
At this point, all we need is to be sure that at least a solution
exist that is compatible with the set of constraints. Hence, it
is not strictly required to globally optimize the model in each
hyper-rectangle, since a feasible solution suffices for the purpose
of the analysis. One can wrongly conclude from this observa-
tion that it is possible to conduct the feasibility analysis using
a local optimization method. This is not true, as the task of the
algorithm is not only to identify feasible solutions in each hyper-
rectangle, but also to discard regions in which no feasible point
exists. Standard local optimization methods cannot accomplish
the latter task, as they can fail even in solving convex prob-
lems (Tawarmalani and Sahinidis, 2002), in such a way that one
will never be sure if the convergence problems that will arise
when attempting to optimize empty hyper-rectangles will really
indicate the absence of feasible solutions. One possible way to
circumvent this issue is to rely on a lower bounding problem,
which is one of the main ingredients of any global optimiza-
tion technique, capable of providing a valid lower bound on the
global optimum of the model. Particularly, the feasibility analysis
requires the use of a linear lower bounding problem, since linear
and mixed-integer linear programming techniques (LP and MILP,
respectively) can indeed identify problems with no feasible solu-
tions. Hence, our method exploits the fact that LP and MILP
techniques will only fail when attempting to solve models of
small/medium size that are really unfeasible (i.e., do not contain
any feasible point). Note that in this context the main task of the
lower bounding problem is not to provide a tight bound on the

AT ROVIRA I VIRGILI 
TIMIZATION APPLIED TO KINETICMODELS OF METABOLIC NET
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global solution of the model, as is the case in standard global opti-
mization methods, but to detect empty hyper-rectangles from
unfeasible models. Thus, the particular features of our feasibility
analysis justify the need for a customized global optimization
method.

ig. 1. Strategy for finding a feasible region. In the first step, the global optimum is identi
yper-rectangle is discarded and the new optimum is located (b). The process is repeate
ypothetical enzymes but the search is done for all simultaneously.
nology 149 (2010) 141–153 145

7. Identify and annotate the hyper-rectangle that contains this
solution. This will be the one whose lower and upper limits
contain the values of ki associated with the optimal solution
identified in the current iteration.

8. Repeat steps 4–7 by excluding the hyper-rectangle containing
the optimal solution obtained in step 5 by adding an integer cut
to the lower bounding problem. This is repeated until no further
solution is found to be compatible with the remaining hyper-
rectangles (i.e., until the lower bounding problem turns out to
be unfeasible).

9. Analyze the obtained results and compare the feasible region
with actual experimental data. If the feasibility region contains
the observed data, this is an indication that the considered set of
constraints may explain the adaptive response. Alternative con-
straints can be introduced and a new feasibility region can be
obtained by starting again the analysis at point 2. In the next sec-
tion we will discuss the interpretation of results obtained with
different sets of constraints.

This procedure is illustrated in Fig. 1. For simplicity, we show
results for two enzymes only. However, at each optimization, all the
enzymes are allowed to change values (see below). The constraints
considered in each optimization are those defined in step 1 plus
the limits on the values of ki that define each hyper-rectangle. By
following the procedure described above, a region of feasibility is
bounded and defined by a set of feasible hyper-rectangles. These
regions can be further refined by increasing the granularity of the
hyper-rectangles within the region(s) of feasibility. Note that any
of the hyper-rectangles that define the feasible regions contains at
least one admissible solution.

3.3. Utility of feasibility regions characterization

S 
The feasibility regions determined through the previously
described methodology can be most useful in two situations:

1. In biotechnological applications. In practical applications, it
may be impossible to attain the optimal solution that would

fied and the hyper-rectangle where it occurs is annotated (a). In the next step, this
d (c) until no new optimum is obtained (d). Here we show results for two of the
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ig. 2. Schematic representation of the central metabolism of yeast. Details are
adivoyevitch, 2000). Basal values for enzyme activities and the resulting steady st

correspond to an optimization analysis. Thus, one can define
a minimum percentage of the optimum that would identify a
practical cost-beneficial strategy. Feasible regions that are com-
patible with that threshold can be obtained using the method
proposed in this work. The desired minimal limit can be math-
ematically represented by a simple inequality constraint. Once
the feasibility region is determined the user can select the most
appropriate values for practical implementation. The feasible
regions will contain a global optimum for attaining this prac-
tical threshold as well as many other subobtimal solutions. Note
that all the identified solutions, including the sub-optimal ones,
would be guaranteed to attain the minimum increase in the
objective function considered in the analysis.

. In evolutionary studies. Feasible regions that are compatible with
physiological requirements can be identified in studies about
evolution of responses. If the model captures the features of the
system that are important for the response, one would expect
to find the actual adaptive response within this region. An itera-
tive analysis considering different physiological constraints may
help in identifying which of these constraints are more impor-
tant as selective pressures for evolving an appropriate response,
avoiding the spandrel effects. Furthermore, comparison of actual
data with optimal solutions can help in understanding the selec-
tive pressures in a given case.

.4. Examples

.4.1. Metabolic model
As an example for showing the applicability of the method

escribed above, we shall consider a simplified conceptual model
or the basal metabolism of yeast that is derived from previous

odels of the same pathways (Curto et al., 1995; Polisetty et al.,
008; Voit and Radivoyevitch, 2000).

This model, summarized in Fig. 2, accounts for glycolisis, the
ynthesis of glycogen and trehalose, the branching from fructose-

,6-P to glycerol, and the branching from glycolisis to the pentose
hosphate metabolism. For convenience, we consider simplified
eactions by lumping together a number of processes. For example,
e consider an aggregated process leading to trehalose and glyco-

en. Numerically, we shall consider that the flux into trehalose is
ssed in previous papers (Polisetty et al., 2008; Vilaprinyo et al., 2006; Voit and
given in Tables 1 and 2.

a fraction of the total flux for this branch (Vilaprinyo et al., 2006;
Voit and Radivoyevitch, 2000). For more details on the simplifica-
tions, assumptions, and experimental evidences used to build this
model the reader is referred to the paper by Voit and Radivoyevitch
(2000). The different processes are modeled using the power-law
formalism as:

Process Velocity Power-law representation Steady-state rate

HXT v1 0.9023X−0.2344
2 X6 17.73

GLK v2 3.1847X0.7464
1 X0.0253

5 X7 17.73

PFK v3 0.5232X0.7318
2 X−0.3941

5 X8 15.946

TDH v4 0.011X0.6159
3 X0.1308

5 X9X−0.6088
14 15.06

PYK v5 0.0947X0.05
3 X0.533

4 X−0.0822
5 X10 30.00

TPS + GLY v6 0.0009X0.7318
2 X11 0.014

G6PDH v7 1.76898 X0.0526
2 X0.9646

15 1.77

GOL v8 0.103209X0.05
3 X0.533

4 X−0.0822
5 X12 1.772

ATPase v9 0.937905X1
5 X13 26.55

(6)

The stoichiometric matrix corresponding to the model in Fig. 2 is
given by:

N =

⎛
⎜⎜⎜⎜⎜⎝

−1 1 0 0 0 0 0 0 0

0 1 −1 0 0 −1 −1 0 0

0 0 1 −1 0 0 0 −1/2 0

0 0 0 2 −1 0 0 0 0

0 −1 −1 2 1 −1 0 0 −1

⎞
⎟⎟⎟⎟⎟⎠

(7)

Multiplying the stoichiometric matrix by the vector of velocities
V = (v1, . . . , v9)′, we would obtain the set of differential equations
for the model in GMA form2:
Ẋ = N · V (8)

2 Here we use the notation Ẋi = dXi/dt.
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Table 1
Basal enzyme activities.

Symbol Name Value

X6 Glucose uptake (HXT) 19.7 mM min−1

X7 Hexokinase (GLK) 68.5 mM min−1

X8 Phosphofructokinase (PFK) 31.7 mM min−1

X9 Glyceraldehyde-3-phosphate
dehydrogenase (GAPD or, as
alternative name, TDH)

49.9 mM min−1

X10 Pyruvate kinase (PYK) 3440 mM min−1

X11 Polysaccharide production 14.31 mM min−1

0.731
2

.0516
0822X

0822X

T
m

3
p

b
w
i

Table 2
Steady-state values of the considered model at the basal conditions.

Symbol Name Basal concentration (mM)

X1 Internal glucose 0.0345
X2 Glucose-6-phosphate 1.011

T
M

T
w
c
a
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(glycogen + trehalose)
X12 Glycerol production (GOL) 203 mM min−1

X13 ATPase 25.1 mM min−1

X14 NAD+/NADH ratio 0.042

The complete mathematical model is given by:

Ẋ1 = 0.9023X−0.2344
2 X6 − 3.1847X0.7464

1 X0.0253
5 X7

Ẋ2 = 3.1847X0.7464
1 X0.0253

5 X7 − 0.5232X0.7318
2 X−0.3941

5 X8 − 0.0009X

Ẋ3 = 0.5232X0.7318
2 X−0.3941

5 X8 − 0.011X0.6159
3 X0.1308

5 X9X−0.6088
14 − 0

Ẋ4 = 2 ×
(

0.011X0.6159
3 X0.1308

5 X9X−0.6088
14

)
− 0.0947X0.05

3 X0.533
4 X−0.

5

Ẋ5 = 2 ×
(

0.011X0.6159
3 X0.1308

5 X9X−0.6088
14

)
+ 0.0947X0.05

3 X0.533
4 X−0.

5

0.0009X0.7318
2 X11 − 0.5232X0.7318

2 X−0.3941
5 X8 − 0.937905X1

5 X13

The basal enzyme activities used in the models are shown in
able 1. The steady-state calculated from these values and the
odel parameters given in Eq. (9) is shown in Table 2.

.4.2. Feasible regions for a significant increase in ethanol

roduction

Optimization of cellular processes is an important goal in
iotechnology. However, optimal solutions obtained with a model
ill seldom be practically realizable. In most cases, significant

ncreases in flux would imply modifying many enzymes at the same

able 3
aximization of ethanol production.

No constraints VNADPH (5% maxim
Maximum fold change in any enzyme Maximum fold chan

5 10 15 20 5 10

Fold change values at the different optimum
HXT 5 10 15 20 5 10
GLK 1.16 10 10.56 16.03 1.16 2.16
PFK 5 10 15 20 5 10
TDH 5 10 15 5.27 5 9.99
PYK 5 10 15 20 5 10
TPS 0.2 0.2 0.2 0.2 0.2 0.2
G6PDH 0.2 0.2 0.2 0.2 0.94 0.94
GOL 0.2 0.2 0.2 0.2 0.2 0.2
ATPase 5 10 15 20 5 10

Steady-state values for metabolites (mM) corresponding to the different optimum
Glu 0.23 0.03 0.05 0.04 0.23 0.25
Glu-6-P 1.23 1.24 1.24 1.24 1.21 1.22
F-1,6-P 10.41 10.43 10.44 91.01 10.29 10.38
PEP 0.01 0.01 0.01 0.01 0.01 0.01
ATP 1.42 1.43 1.43 1.43 1.40 1.41

Steady-state values for fluxes (mM min−1) corresponding to the different optimum
VATP 336.1 673.8 1011.5 1348.9 332.8 670.2
VTRE 0.00027 0.00027 0.00028 0.00028 0.00027 0.00
VNADPH 0.36 0.36 0.36 0.36 1.68 1.68
VGLY 0.43 0.43 0.43 0.43 0.43 0.43
VETHANOL 168.0 336.9 505.8 674.6 166.3 335.2

he different scenarios are defined by allowing a maximum fold change increase for an
ithout any other restriction (left) and with a maximum allowable change in the rate o

hange in the rate of NADPH and ATP synthesis of 5% about its basal value (right). Steady
re also shown for comparison.
8X11 − 1.76898 X0.0526
2 X0.9646

15

X0.05
3 X0.533

4 X−0.0822
5 X12

10

10 − 3.1847X0.7464
1 X0.0243

5 X7−

(9)

X3 Fructose-1,6-diphosphate 9.144
X4 Phosphoenolpyruvate (PEP) 0.0095
X5 ATP 1.1278

time, which can be unpractical. One possible application of the
feasibility method proposed here is to explore possible changes
in enzyme activity leading to acceptable solutions, say a given
percentage over the basal value or a given percentage below the
optimum value. As an example, we will consider the optimization
of ethanol production using the reference model. Because of the

simplifications introduced in the model, the rate of synthesis of
ethanol is the same as that for the synthesis of pyruvate.

First, as a reference for comparison, we explore the maximum
rate of ethanol production that can be achieved if changes are
allowed in all enzyme activities. The results of the optimization

analysis using the method described elsewhere (Guillén-Gosálbez
and Sorribas, 2009) are shown in Table 3. For comparative purposes,
we obtain the optimal solution with different allowed ranges for
enzyme activity changes. A nearly linear increase in ethanol pro-
duction is achieved as we allow higher increases in the enzymes.

um variation) VNAPDH, VATP (5% maximum variation)
ge in any enzyme Maximum fold change in any enzyme

15 20 5 10 15 20

15 20 1.01 1.01 1.01 1.01
7.6 20 0.27 0.27 0.27 0.27

15 20 1.14 1.14 1.14 1.14
15 20 2.58 2.58 2.58 2.58
15 20 0.34 0.34 0.34 0.34

0.2 0.2 0.2 0.2 0.2 0.2
0.94 0.94 0.95 0.95 0.95 0.95
0.2 0.2 0.22 0.22 0.22 0.22

15 20 0.94 0.94 0.94 0.94

0.08 0.03 0.21 0.21 0.21 0.21
1.23 1.23 0.95 0.95 0.95 0.95

10.40 10.42 2.05 2.05 2.05 2.05
0.01 0.01 0.09 0.09 0.09 0.09
1.42 1.42 1.29 1.29 1.29 1.29

1008.2 1345.9 63.4 63.4 63.4 63.4
027 0.00027 0.00027 0.00022 0.00022 0.00022 0.00022

1.68 1.68 1.68 1.68 1.68 1.68
0.43 0.43 1.33 1.33 1.33 1.33

504.1 672.9 31.9 31.9 31.9 31.9

y of the enzymes of 5, 10, 15, and 20-fold. Optimal enzyme patterns are obtained
f NADPH synthesis of 5% about its basal value (center) and a maximum allowable
-state values of metabolites and relevant fluxes resulting from the optimal change
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Fig. 3. Feasibility analysis of the maximum ethanol production when only HXT (k1) and PFK (k3) are allowed to change. Values inside the left tables indicates optimum
ethanol production within each cell. Cells are defined by the values of k1 and k3 indicated in the right tables. In each case, the minimum and maximum value defining each
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ell are shown in those tables. Color code shows the decreasing ethanol production
ombinations. (a) Optimization constrained to prevent an accumulation of interme
revent an accumulation of intermediary metabolites that is over 10 times their ba
alue. (For interpretation of the references to color in this figure legend, the reader

hen no restriction is considered (Table 3 left), with a 20-fold
hange one can reach a velocity of 674.6 mM min−1 that is much
igher than the basal value of 30.0 mM min−1. While HXT, PFK, PYK,
nd ATPase should increase 20-fold, GLK and TDH require a lower
ncrease. In all four scenarios, optimization of ethanol production
hould require lowering TPS, G6PDH, and GOL activities. Imposing
imits on the changes of NADPH production leads to a similar result,
ut now the activity of G6PDH is almost unchanged (Table 3 cen-
er). It is important to stress that in all the cases the synthesis of ATP
ncreases by a large amount, from a basal value of 46.07 mM min−1

o 1348.9 mM min−1 when the maximum fold change allowed is 20.
f we restrict both the increase in NADPH and ATP production, then
he maximum attainable ethanol production drastically decreases
Table 3 right).

In the previous examples, all the enzymes were allowed to
hange. A more realistic approach that could be translated into
et lab experiments should analyze the practical possibilities

f increasing ethanol production when only a small number of
nzymes are changed. For illustrative purposes, based on the previ-
us analyses of this problem (Guillén-Gosálbez and Sorribas, 2009;
olisetty et al., 2008; Vilaprinyo et al., 2006), we select HXT and
FK. We shall maintain all the other enzymes fixed at their basal
ctivity. As we are looking for solutions that do not compromise
ell viability, we shall enforce the condition that all the internal
etabolites should not change more than 10-fold from their basal

alues (Polisetty et al., 2008). Under such constrains, the maximum
ate of ethanol production that can be obtained in the model is
00.52 mM min−1 (Fig. 3a).

Now, we will obtain the feasibility region under the same con-
trains. This is an alternative to just finding the optimal solution
nd it may help in discussing the changes that can be implemented
n practice. First, we obtain the feasibility region without limita-
ion in additional fluxes. In this case, the feasibility region has

dmissible ranges between 0.21 and 5.38 for changing HXT, and
range between 0.2 and 15 for PFK. Outside these limits, no fea-

ible solution can be obtained (Fig. 3a). While it is reasonable to
xpect that ethanol production would increase by increasing HXT,
ur results show that increasing simultaneously HXT above 4.86-
can be attained in different conditions. Blue color and 0 values indicate unfeasible
metabolites that is over 10 times their basal value. (b) Optimization constrained to
lue and a change in the production of NADPH that is larger than 5% about the basal
rred to the web version of the article.)

fold and PFK above 3.16-fold (cell number 9 for HXT and cell 3
for PFK in Fig. 3a) leads to unfeasible solutions. This is so because
intermediary metabolites would accumulate and the fitness of cells
would decrease. Thus, a biotechnological implementation of a 5-
fold change in HXT and a 5-fold change in PFK is expected to result
in a failure in producing a viable strain. Our results also show that
near optimum increases in ethanol production can be obtained in
different conditions. As far as HXT activity is increased a minimum
of 6.12-fold, we can obtain an almost optimal ethanol increase with
different increases in PFK activity. For instance, we could decide a
3-fold increase in PFK and an 8-fold increase in HXT to obtain an
almost optimal solution.

Planning a biotechnological strategy for increasing the produc-
tion of a given metabolite must consider all the implications of the
planned changes in the overall cellular metabolism. As a second
scenario, we have determined the feasible solutions by imposing
the additional constraint of maintaining the rate of NADPH within
a 5% of its basal level (Fig. 3b). Now, the feasible region has been
drastically reduced and the possible increase in ethanol produc-
tion is almost minimal when compared to its basal value. Thus, in
those cases in which maintaining the rate of NADPH unchanged is
an important limitation, it is impossible to find a strategy involving
changes in HXT and PFK capable of producing a significant increase
in ethanol production (Fig. 3b).

These results show the potential application of our feasibility
analysis in practical applications. Following this procedure, we can
efficiently obtain an overall picture of the attainable values and a
clear estimation of the unfeasible changes. This may help in dis-
cussing the most convenient implementation and the expected
increase one would obtain in the objective function.

3.4.3. Feasible regions for the adaptive response to heat shock in
yeast
Understanding the evolution of adaptive responses was the
main motivation for developing the feasibility method (Guillén-
Gosálbez and Sorribas, 2009). As stated before, the goal of the
feasibility analysis is to obtain admissible values for enzyme activ-
ity changes that drive the model to a new state in which a set of
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Table 4
Physiological constraints for the feasibility analysis (see Vilaprinyo
et al., 2006 for details).

Constraint Value

C1 VATP > 180.6 mM min−1

C2 VTRE > 0.03 mM min−1

C3 VNADPH > 3.54 mM min−1

C4

Internal glucose > 0.04 mM
G6P < 20.22 mM
F16P < 22.86 mM
PEP < 0.01 mM
ATP < 6.77 mM
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onstraints are satisfied. Here, two fundamental ingredients are
equired. First, we need a mathematical model that is accurate
nough to represent the biological problem at hand. Second, a set
f constraints must be defined, so that changes in enzyme activity
an be evaluated for compatibility.

Both issues pose significant challenges. Useful mathematical
odels are hard to build and, in most cases, parameters values

or those models are difficult to obtain. This limitation is common
o any application as discussed in the optimization section. Find-
ng a set of constraints for the response is not an easy task either,
nd a sound biological understanding of the problem is required.
s an example of the potential use of the methodology presented
ere, we consider the model presented in Fig. 2. First, we shall
erform a feasibility analysis taking into account the set of con-
traints C1–C6 suggested by Vilaprinyo et al. (2006) (see Table 4).
hese constraints were identified and used for a previous analysis
f operating principles in the adaptive response of yeast to heat
hock.

Taking these constrains into account, we first find the upper
nd lower admissible values for changing each enzyme. Mathe-
atically, this corresponds to performing a bound contraction on

ome continuous variables of the non-convex problem. Specifically,
hose limits are obtained by solving an optimization problem that

AT ROVIRA I VIRGILI 
TIMIZATION APPLIED TO KINETICMODELS OF METABOLIC NET
zo Fernández 
egal: T.1469-2012 
nds the maximum and minimum values of a given ki for which
dmissible solutions are found. Results are shown in Fig. 4a. These
esults are a generalization of those in Fig. 2(D) in the paper of
ilaprinyo et al. (2006). As we are now using a systematic search,
ur results include those obtained previously by intensive compu-

ig. 4. Result of the bound contraction procedure. In each case, the maximum and minim
Table 5), (b) experimental data plotted to show they are located in the admissible regio
8), (b) experimental data plotted to show they are located in the admissible region foun
he search regions allowed for the change-fold in each enzyme are shown in Table 6.
C5 Cost < 12.06
C6 VGlycerol > 0.39 mM min−1

See Vilaprinyo et al. (2006) for details.

tations and are slightly wider as the previous analysis was done
by considering only a set of discrete values. Furthermore, by using
the new procedure, computational time is dramatically reduced to
seconds.

In Fig. 4b, we plot the activity profiles corresponding to differ-
ent experimental measurements (see details in Table I of Vilaprinyo
et al., 2006). Note that all the experimental results are within the

predicted values. Imposing two extra constraints (C7–C8) on the
changes in PFK and TPS relative to the rate of trehalose synthe-
sis (� = (�PFK × �TPS)/vTRE, � < 100), and a minimum value of
F-1,6-P of 8.16, (criteria C7, C8 in Vilaprinyo et al., 2006), the lim-
its for PFK are drastically reduced (Fig. 4c), although the resulting

um admissible change folds for each enzyme are indicated. (a) Bounds with C1–C6

n found in (a), (c) Bounds with C1–C8 (see text for the definition of criteria C7 and
d in (c). Experimental data are those of Tables 1 and 2 in Vilaprinyo et al. (2006).
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Fig. 5. Feasibility regions for a simultaneous change in two enzymes. In each case, all the other enzymes can change to compensate and make the changes compatible with
the constraints C1–C6. Red rectangle identifies the limit for changing a given enzyme. For instance, in the case of PFK we have considered changes between 0.2 and 4. These
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onditions are the same considered in Vilaprinyo et al. (2006) and are maintaine
nexplored in that example. Blue points indicate experimental values described in
gure legend, the reader is referred to the web version of the article.)

ounds still contain the observed results (Fig. 4d, see also Fig. 2(E)
n Vilaprinyo et al., 2006).

The complete results of performing the feasibility analysis are
resented in Fig. 5. As indicated above, we first obtain the limits for
dmissible solutions taking into account criteria C1–C6 and specific

imits imposed on the allowable fold changes in each enzyme based
f experimental results (Table 5). For clarity, in Fig. 5 we show one-
y-one figures that show the simultaneous feasibility regions for
wo particular enzymes. It can be seen that some enzyme activities

Table 5
Limits for the fold change in the different enzymes in the
feasibility analysis of Fig. 5.

Enzyme Explored fold change

HXT 1 < k1 < 10
GLK 1 < k2 < 19
PFK 0.25 < k3 < 4
TDH 0.25 < k4 < 6
PYK 0.25 < k5 < 20
TPS 1 < k6 < 19
G6PDH 1 < k7 < 8

These limits were defined considering experimental results.
In each, a wide region around the values observed after heat
shock are selected (see Vilaprinyo et al., 2006 for details).
for comparison. Red rectangles indicate admissible solutions. White regions are
1 of Vilaprinyo et al. (2006). (For interpretation of the references to color in this

can take a wide range of values within their allowable boundaries,
while still fulfilling the imposed constraints. This is the case for TPS
and GLK. For other enzymes, feasible changes are more restricted.
For example, PFK and TDH cannot increase by more than 5-fold
their basal values. Outside this range, the system cannot compen-
sate the changes and the constraints are not met. This is also the case
for PFK and PYK. Feasible solutions for changes in both enzymes are
obtained only in a relatively narrow margin. Interestingly, experi-
mentally measured changes from different experiments are found
to be within the feasibility regions identified by our method (see
Vilaprinyo et al., 2006 for details). This is consistent with the notion
that the set of constraints defined for the response are relevant for
the physiological adaptation of yeast.

3.4.4. On the importance of an appropriate set of constraints
The set of initial physiological constraints that are applied to the

optimization procedure play a fundamental role in the feasibility
analysis. Different sets of constraints are likely to produce differ-
ent feasibility regions. The situation is exemplified in Fig. 6. Each

of the represented regions would correspond to different sets of
constraints. In this hypothetical situation, regions (1), (2), and (4)
contain experimental results, while (3) and (5) do not. Thus, the
constraint sets leading to regions (3) and (5) could be discarded
as explanatory physiological constraints for that case. Constraints
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Table 6
Alternative set of constraints for evaluating heat shock response
in yeast.

Constraint Value

C1 VATP > 5B
C2 VTRE > 30B
C3 VNADPH > 5B

C4 3B < internal glucose < 5B
15B < G6P < 20B
2B < F16P < 5B
2B < PEP < 5B
3B < ATP < 6B

C5 Cost < 20

F
a
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ig. 6. Hypothetical feasibility regions obtained from five different sets of con-
traints. Points represent experimental results on fold change for enzymes Ei and Ej
n a given adaptive response (see text for details).

roducing region (1) should be considered more restrictive than
hose of (2), although both explain the observed result. Finally, the
et of constraints that produce region (3) partially explain some
esults but not others. In principle, this set of constraints would be
ess appropriate to describe the physiological requirements of the
esponse than sets (1) and (2).

How would changing constraint sets affect the results in our
nalysis of yeast heat shock response? As an example, we have
onsidered an alternative set of constraints to those used above
compare Tables 4 and 6). For illustrative purposes, in feasibility
nalysis using constraints from either Table 4 or Table 6, the activity
f any enzyme is allowed to change between 0.2 and 20-fold. For
implicity, only the results for PFK, TDH and PYK are shown in Fig. 7.
he two sets of constraints result in different feasibility regions
hat share some common values. Interestingly, the feasibility region

btained with the new set of constraints does not contain all the
xperimental values (see Table 1 in Vilaprinyo et al., 2006). This
uggests that this second set of constraints does not adequately
escribe the physiological requirements that may have shaped the
daptive response of yeast to heat shock.

ig. 7. Feasibility analysis obtained with two different sets of constraints. Constraint se
llowed to change between 0.2 and 20-fold over basal. Blue points indicate experimental
C6 VGlycerol > B

B indicates de corresponding basal value (Tables 1 and 2) for the
flux or metabolite considered in each criterion.

4. Discussion

Understanding why metabolic pathways evolved to be as they
are and how to optimize them are two closely related subjects.
Studies in either field often use similar tools to compute the
response of the whole system to changing conditions.

In optimization problems, control variables are manipulated by
the experimenter and a predefined goal is pursued. This is often the
case in metabolic engineering studies, where the general goal is that
of modifying cells so that specific production targets can be reached
(Hatzimanikatis et al., 1998). Typically, one considers optimizing
the yield of a given process, maximizing flux through a pathway,
etc. Then, optimization procedures are used on a mathematical
model for the relevant processes in order to analyze which changes
are the most likely to produce the desired result (Gianchandani
et al., 2008). There is a wide scope of optimization methods that
can be used for this task, based on different optimization strate-
gies (Banga, 2008; Chang and Sahinidis, 2005; Marin-Sanguino et
al., 2007; Nielsen, 2007; Polisetty et al., 2008; Schuetz et al., 2007;
Vital-Lopez et al., 2006).

In evolutionary studies, however, we are faced with conserved

changes that can appear in organisms by random mutations, by
gene transfer, gene duplication, gene deletion, and other mecha-
nisms. Natural selection may operate as a purifying mechanism that
acts upon the systemic effect of these changes on the overall fitness

t 1 correspond to Table 5, constraint set 2 to Table 6. In both cases, enzymes are
measurements as presented in Table 1 of Vilaprinyo et al. (2006).
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nd leads to the fixation of new designs and operative patterns in
population, due to the differential reproduction of individuals.
s a result, organisms often evolve towards some quasi-optimal
egime under the conditions they live in. Such regime however may
ecome quite sub-optimal if conditions change drastically. Those
hanges could lead to a new round of natural selection, this time
ith different physiological constraints. Thus, evolution in natural

ystems can be seen as a perpetual optimization-like process, with
he parameter conditions that maximize survival and reproduction
hifting over time.

In fact, one of the biggest current problems in this area is how to
stablish a connection between what researchers see as the actual
unctioning conditions of the molecular pathways that allow a cell
o perform appropriately and the fitness of that cell. Causative
enotype phenotype models (Martens et al., 2009; O’Connor and
undy, 2009) are but a start in connecting the optimization of

he molecular determinants of life and the fitness of organisms.
e hypothesize that adaptive responses are to be found within

easible regions that allow the system to meet a set of physiologi-
al constraints that are required for cell survival (Guillén-Gosálbez
nd Sorribas, 2009; Vilaprinyo et al., 2006). The numerical thresh-
lds considered in these constraints would shape the admissible
hanges in the system parameters so that the effect on global fitness
an be sensed by natural selection. As a result, a specific adaptive
esponse would evolve. Future work should deal with connecting
he molecular aspects of the adaptive response to the direct survival
bility.

From a practical point of view, there is a set of considerations
hat should be taken into account in optimization related stud-
es of biological problems at the pathway level: (1) a model that
an be used to compute fluxes, metabolite levels, the effect of
hanges in parameters, dynamic response, etc., is required; (2)
toichiometry-based models, such as Flux Balance Analysis mod-
ls, are not sufficiently accurate to be used for characterizing
uantitative changes. This is so because they do not account for
egulatory interactions within the network and cannot be used
o accurately calculate metabolite levels, dynamic changes, and
ther quantitative information (Nikolaev, 2009); (3) models that
nclude information about the regulatory signals are essential for an
ccurate analysis; (4) kinetic information, even if it is only approx-
mated, is required to define a quantitative model that may help
n the analysis. Because of (4), at present we are still unable to
reate genome-wide models for metabolism, because not enough
nformation is available. However, the obtained results show the
mportance of developing GMA-like models as a basis for a more
omplete analysis of system optimization and evolution. In this
aper we have presented a methodology designed to address

mportant practical questions, both in metabolic engineering appli-
ations and in studies of pathway evolution, through the use of a
lobal nonlinear optimization technique and the characterization
f feasibility regions. Although linear global optimization methods
ad been used before to search for survivability regions in Flux Bal-
nce Analysis models, those studies have the limitations described
n points (1)–(4) of the previous paragraph. Our methodology over-
omes those limitations and it can be applied to a special class of
onlinear differential equations models known as GMA models.3

f such a model is defined for a given metabolic problem, then our
ethod allows for an exhaustive exploration of different evolution-

ITAT ROVIRA I VIRGILI 
OPTIMIZATION APPLIED TO KINETICMODELS OF METABOLIC N
Pozo Fernández 
 Legal: T.1469-2012 
ry strategies and a systematic characterization of the physiological
equirements that may underlie the evolution of adaptive strate-
ies.

3 It should be noted that ODE models written using other mathematical forms can
e recasted into GMA models, increasing the generality of the method presented
ere.
nology 149 (2010) 141–153
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Abstract

Background: Design of newly engineered microbial strains for biotechnological purposes would greatly benefit
from the development of realistic mathematical models for the processes to be optimized. Such models can then
be analyzed and, with the development and application of appropriate optimization techniques, one could identify
the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As
appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their
global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA)
models based on the power-law formalism, offer a possible solution to this problem because they have a
mathematical structure that enables the development of specific algorithms for global optimization.

Results: Based on the GMA canonical representation, we have developed in previous works a highly efficient
optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in
cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA
model, so that global optimization on the recast GMA model can be performed. With this technique, optimization
is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is
straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that
extend the power-law formalism to deal with saturation and cooperativity.

Conclusions: Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate
strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task.

1 Background
Identifying optimization strategies for increasing strain
productivity should be possible by applying optimization
methods to detailed kinetic models of the target meta-
bolism. Thus, a rational approach would pinpoint the
changes to be done - e.g. by modulating gene expression
- in order to achieve the desired biotechnological goals
[1-4]. To build such models we can either start from a
detailed description of the underlying processes (bot-
tom-up strategy) or we can fit kinetic models to experi-
mental data obtained in vivo (top-down strategy).

The bottom-up approach was the original strategy for
model building in the biological sciences. Bottom-up
kinetic models require information that is seldom avail-
able, despite the increasing amount of kinetic data con-
tained in a growing set of databases (for example see
[5,6] and the webpage http://kinetics.nist.gov/kinetics/
index.jsp). Even in the best case scenarios where kinetic
data are available, the data have often been obtained in
different labs and under in vitro conditions that are
hardly ever comparable or representative of the situation
in vivo. In addition, models built using this strategy
often fail to adequately reproduce the known behavior
of the target system [7-10]. With the accumulation of
time-series data, which were originally generated from
the accurate measurement of transient responses, top-
down modeling became viable as an alternative to the
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bottom-up strategy [11]. However, top-down modeling
also faces important difficulties. For example, regulatory
interactions between metabolites and enzymes are very
poorly characterized and most metabolic maps lack such
crucial information. Therefore, for a given network
structure (i.e. a stoichiometric description) obtained
from databases, a large number of alternative regulatory
patterns may exist that account for the observed experi-
mental data [12]. Model discrimination among the alter-
native regulatory patterns requires appropriate
experimental design. However, this is seldom considered
when performing the time series measurements. Last,
but not the least, parameter identifiability in highly non-
linear models can be problematic (for a review see [13]).
An additional issue that is common to models built

using both strategies is that such detailed kinetic models
include non-convexities that lead to the existence of
multiple local optima in which standard non-linear opti-
mization algorithms may get trapped during the search.
Several stochastic and deterministic global optimization
methods have been proposed to overcome this limita-
tion [14]. Deterministic methods, which are the only
ones that can rigorously guarantee global optimality,
rely on the use of convex envelopes or underestimators
to formulate lower-bounding convex problems that are
typically combined with spatial branch and bound stra-
tegies. Most of these methods are general purpose and
assume special structures in the continuous terms of the
mathematical model. Because of this, they can encoun-
ter numerical difficulties in specific metabolic engineer-
ing systems that require the optimization of kinetic
models with a large number of non-convexities of differ-
ent nature.
Given all these issues, it is hardly surprising that linear

stoichiometric models have emerged as the most popu-
lar tool to analyze genome-wide metabolic networks
using optimization techniques. Linear optimization pro-
blems can be solved using very fast and efficient algo-
rithms [15,16] that are implemented in almost every
kind of computer, ranging from laptops to cloud com-
puting centers. In addition, such models require a rela-
tively small amount of information.
The possibility of condensing information about a very

large network in a compact form enabled stoichiometric
models to provide interesting insights in many different
cases. However, the apparent simplicity in building and
analyzing stoichiometric models comes at the cost of
neglecting regulatory signals, metabolite levels and
dynamic constraints. Accounting for these features in a
dynamic way requires using more detailed, non-linear,
mathematical models [17,18].
These models go a step further than stoichiometric

models by incorporating regulatory influences through a
set of ordinary differential equations that can account

for the system’s dynamics. Building such models is often
impossible because the appropriate functional form that
needs to be used to describe the dynamical behavior of
specific processes is in general unknown. Modeling stra-
tegies based on systematic approximated kinetic repre-
sentations, such as power-laws [19-22], Saturating and
Cooperative [23], or convenience kinetics [24], side-step
this issue by providing uniform forms that are guaran-
teed to be accurate over a range of conditions and
reduce the amount of information required to build the
models. Because of the regularity in the form of the
mathematical function, models based on approximate
formalisms can be automatically built from the reaction
scheme of the target system. The model parameters can
subsequently be estimated from experimental data using
different procedures [13,25].
Although building and analyzing of comprehensive

genome-wide detailed models is still not viable in most
cases (see however [26,27]), developing ways to extend
large scale optimization analysis to larger and more rea-
listic non-linear kinetic models is an important part of
the future of systems biology [18]. In fact, the optimiza-
tion of certain types of non-linear problems can already
be solved very efficiently and geometric programming
problems with up to 1,000 variables and 10,000 con-
straints can be solved in minutes on a personal
computer.
Efficient global optimization techniques are available

for power-law models [1,28-30], either in S-system form
or in Generalized Mass Action (GMA) form (for a
review see [31]). In the case of S-system models, a sim-
ple logarithmic transformation brings the model to a
linear form [1]. In the case of GMA models, the pro-
blem can be efficiently solved using branch-and-bound
[28,32] and outer-approximation techniques [29,30].
The usefulness of the global optimization techniques

developed for GMA models has been shown in the ana-
lysis of the adaptive response of yeast to heat shock
[29,33]. In essence, starting with a GMA model and
considering a set of constraints on flux and metabolite
values, we can obtain: (i) The pattern of enzyme activ-
ities that maximizes a given objective, (ii) The region of
feasible changes in enzyme activities so that the model
fulfills a set of constraints on fluxes, metabolites, maxi-
mum allowable change in activity, etc., and (iii) A heat
map of how the objective function changes within the
feasible region. These results share some similarities
with those produced with stoichiometric models, but
incorporate many additional features.
Based on ideas similar to those that led to the devel-

opment of the power-law formalism, Sorribas et al. [23]
proposed a new Saturable and Cooperative (SC) formal-
ism, that extends the power-law representation to
include cooperativity and saturation. Although models
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built using this new formalism loses some of the simpli-
city inherent to the analysis of S-systems and GMA
models, they tend to be accurate over a wider range of
conditions than both the S-System and GMA represen-
tations [23]. Thus, it is important to enlarge the scope
of global optimization methods developed for power-law
models in order to deal with the SC formalism and ana-
lyze under which situations the later models behave bet-
ter than the former.
Optimization of SC models faces a number of practi-

cal problems common to kinetic non-linear models
[34,35]. To sidestep these problems, and in order to be
able to use global optimization methods developed for
power-law models, we will use a technique called recast-
ing. Recasting permits the exact transformation of a
continuous non-linear model with an arbitrary form
into a canonical GMA model [36,37]. This transforma-
tion is typically performed by increasing the number of
variables of the original model. Through this technique,
arbitrary non-linear models can be represented using a
canonical form such as GMA or S-system that can be
used for simulation and optimization purposes, which
opens the door for effectively extending the optimization
and feasibility analysis originally devised for GMA mod-
els to other detailed kinetic models.
In this paper, and as a first step to define a framework

for optimization of non-linear models with arbitrary
form and extend FBA and related approaches to detailed
kinetic models, we shall show the practical utility of
recasting SC models into GMA models for optimization
purposes. This technique is similar to the symbolic
reformulation algorithm proposed by Smith and Pante-
lides [38]. Our method, however, focuses on obtaining a
power-law representation that greatly facilitates global
optimization, instead of continuing with the recasting
until converting the model to a standard form contain-
ing linear constraints and a set of nonlinearities corre-
sponding to bilinear product, linear fractional, simple
exponentiation and univariate function terms. After
recasting the model to the canonical form, we can apply
any of the optimization strategies we have presented for
GMA models [29,32] to obtain the global optimum of
the original SC problem.

2 Results
2.1 Global optimization of non-linear models through
recasting
For a proof of concept of the difficulties of global opti-
mizing non-linear models and of the use of recasting for
attaining practical solutions, we shall start by defining a
reference biochemical network that corresponds to the
reaction scheme in Figure 1. This hypothetical system
has a source metabolite X5 and four internal metabo-
lites. The network includes six reactions and a branch

point. X3 acts as a feed-back inhibitor of the synthesis of
X2, while X1 is an activator of the synthesis of X4.
The generic model for this system is:

Ẋ1 = v1 − v2

Ẋ2 = v2 − v3 − v5

Ẋ3 = v3 − v4

Ẋ4 = v5 − v6

(1)

Each of the velocities is a non-linear function of the
involved metabolites. The SC representation, provides a
systematic way for defining a functional model of this
pathway. As a demonstrative example, let us suppose
that the numerical model is:

dX1
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=
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In these equations, kr, r = 1,.., 6 is an auxiliary variable
used to model changes in the enzyme activity. At the
basal level, kr = 1 for all the reactions. During the opti-
mization tasks, it is possible to limit the maximum
change in gene expression by imposing a maximum
allowable change in kr.
We shall now address the following questions:
(i) To what extent can general purpose global optimi-

zation methods be applied to SC models?, (ii) Given
that a SC model can be recast as a GMA (rGMA), is

Figure 1 Branched network with feedback and feedforward
regulation. X5 is a fixed external variable that can be varied at will.
A GMA reference model is set-up by selecting appropriate
parameters (see text).

Pozo et al. BMC Systems Biology 2011, 5:137
http://www.biomedcentral.com/1752-0509/5/137

Page 3 of 12

60

UNIVERSITAT ROVIRA I VIRGILI 
GLOBAL OPTIMIZATION APPLIED TO KINETICMODELS OF METABOLIC NETWORKS 
Carlos Pozo Fernández 
Dipòsit Legal: T.1469-2012 
 



this useful for optimization of the original SC model?,
(iii) Are the results obtained with the rGMA equivalent
to the results of the original SC model?, and (iv) What
are the practical advantages of optimizing a rGMA
model?.

2.2 Optimization goals
In order to address the questions posed at the end of
the previous section we shall define the following opti-
mizations tasks (note that changes in enzyme activities
and metabolite concentrations are constrained between
0.2 ≤ kr ≤ 5.0 and 0.1 ≤ Xi ≤ 10.0 respectively in all the
instances unless otherwise specified):

• O1: What is the optimal pattern of changes in
enzyme activities that maximizes the objective func-
tion in the new steady-state for a fixed value of X5?
• O2: What is the optimal pattern of changes in
enzyme activities that maximizes the objective func-
tion in the new steady-state for a fixed value of X5

considering a maximum allowable variation of 10%
in the steady-state values of the intermediaries?
• O3: What is the optimal pattern of changes in
enzyme activities that maximizes the objective func-
tion in the new steady-state for a fixed value of X5

considering changes in the output flux from X4 of
less than 10% with respect to its reference value?
• O4: What is the best set of changes, assuming that
we can only manipulate three enzymes, that maxi-
mizes the objective function in the new steady-state
for a fixed value of X5 considering a maximum varia-
tion of 10% in the steady-state values of the
intermediaries?

Two different objective functions (OF), steady-state
concentration of X3 and flux v4, have been considered
for each optimization case, except for O3. This latter
case has been optimized in terms only of the first objec-
tive (i.e., steady-state concentration of X3), because lim-
its on v4 are already included in the formulation of the
optimization problem.

2.3 Global optimization of SC models using BARON
We first address the optimization of the aforementioned
model in their original SC form using state of the art
global optimization techniques. The model was coded in
the algebraic modeling system GAMS 23.0.2 and solved
with the commercial global optimization package
BARON v.8.1.5. on an Intel 1.2 GHz machine. An
optimality gap (i.e., tolerance) of 0.2% was set in all the
instances. As can be seen in Table 1, BARON produce
results with an optimality gap (OG) below the specified
tolerance.

Table 1 only shows one solution for each particular
instance. However, BARON identified in each case a set
of equivalent optima (i.e, solutions with the same objec-
tive function value) involving different changes in
enzyme activities, which indicates that the optimization
problem is somehow degenerated. This redundancy is a
consequence of the system’s structure and has practical
implications. As an example, we have calculated some of
these equivalent points for case O1-v4 using the NumSol
option of BARON (see Figure 2). In particular, a well
defined triangular region containing the changes in k2
and k5, and k1 and k2 that lead to the same objective
function value is identified. Within these regions, one
can decide which combination of changes should be
selected based on additional cost arguments, as they all
show the same performance in terms of the predefined
objective function. This region could be further reduced
by imposing additional constraints to the optimization.

2.4 Recasting SC models into GMA models
Any SC model can be recast into a GMA canonical
model by introducing the auxiliary variables

zrj = Krj + X
nrj

j . Substitution and differentiation generates

the following recast GMA (rGMA) model:

Ẋi =
p∑

r=1
μirVr

n+m∏
j=1

X
nrj

j z−1
rj i = 1, .., n (3a)

żrj = nrjX
nrj−1
j Ẋj r = 1, .., p

j = 1, ..., n + m
(3b)

with appropriate initial conditions Xj(0) = Xj0 and

zrj(0) = Krj + X
nrj

j0 .

For simulation purposes, model (3) is equivalent to the
original SC model. As discussed in [36], a model recast
into a GMA model has the same steady-state that the
original non-linear model. The steady-state equations of
the rGMA model can be expressed as:

Table 1 Results for the maximization of X3 and v4 and
optimization goals O1-O4 using BARON v.8.1.5. for a
tolerance of 0.2%

O k1 k2 k3 k4 k5 k6 X3 OG (%) CPU (s)

1 0.26 5.00 4.97 0.20 0.20 0.54 8.30 0.20 136.17

2 0.20 0.24 0.22 0.20 0.21 0.20 1.10 0.00 0.06

3 0.60 5.00 5.00 0.53 0.20 0.27 5.39 0.20 96.39

4 0.99 1.15 1.00 0.96 1.00 1.00 1.10 0.00 1.42

O k1 k2 k3 k4 k5 k6 v4 OG (%) CPU (s)

1 4.61 5.00 5.00 5.00 0.72 1.20 37.40 0.20 157.83

2 3.22 3.73 5.00 4.99 0.21 0.22 31.33 0.00 1.67

3 0.88 0.94 0.88 0.96 0.23 3.00 6.60 0.00 10.53

4 1.16 1.00 1.34 1.34 1.00 1.00 7.61 0.00 3.61
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p∑
r=1

μirVr

n+m∏
j=1

X
nrj

j z−1
rj = 0 i = 1, .., n (4a)

nrjX
nrj−1
j Ẋj = 0 r = 1, .., p

j = 1, ..., n + m
(4b)

2.5 Steady-state optimization of SC models through
recasting
The steady-state solutions of Eqn. (4b) satisfy also Eqn.
(4a). Thus, for optimization purposes, the steady-state
constraints of interest are:

p∑
r=1

μirVr

n+m∏
j=1

X
nrj

j z−1
rj = 0 i = 1, .., n (5a)

Krj + X
nrj

j0
= zrj0 r = 1, .., p

j = 1, ..., n + m
(5b)

According to these results, the optimization problem
can be stated as:

min − OF OF = {Xi or vr}
s.t.∑p

r=1 μirkrvr
∏n+m

J=1 X
nrj

j z−1
rj = 0 i = 1, .., n

j = 1, ..., n + m
Krj + X

nrj

j0 = zrj0 r = 1, .., p
j = 1, ..., n + m

XiL ≤ Xi ≤ XiU i = 1, ..., n
krL ≤ kr ≤ krU r = 1, ..., p
..... additional constraints ........

(6)

In our reference model, we shall consider the follow-
ing constraints:

min − OF OF = {X3, v4}
s.t.∑p

r=1 μirkrvr
∏n+m

J=1 X
nrj

j z−1
rj = 0 i = 1, .., n

Krj + X
nrj

j0
= zrj0 r = 1, .., p

j = 1, ..., n + m
Specific constraints for each optimization task
(O1, O3 only)
0.1 ≤ Xi ≤ 10 i = 1, ..., n

(O1, O2, O3 only)
0.2 ≤ kr ≤ 5 r = 1, ..., p

(O2, O4 only)
0.9XBAS

i ≤ Xi ≤ 1.1XBAS
i i = 1, ..., n

(O3 only) and (OF : X3 only)
0.9vBAS

4 ≤ v4 ≤ 1.1vBAS
4

(O4 only)
kr = kr1 + kr2 + kr3 r = 1, ..., p
kLB

r yr1 ≤ kr1 ≤ (1 − δ)yr1 r = 1, ..., p
(1 − δ)yr2 ≤ kr2 ≤ (1 + δ)yr2 r = 1, ..., p
(1 + δ)yr3 ≤ kr3 ≤ kUB

r yr3 r = 1, ..., p
yr1 + yr2 + yr3 = 1 r = 1, ..., p∑p

r=1 yr1 +
∑p

r=1 yr3 ≤ ME = 3

(7)

Once the problem has been recast into a rGMA, its
mathematical structure can be exploited in order to
improve the efficiency of the solution procedure, as
demonstrated by the authors in previous works. This
problem has a GMA form except for the auxiliary con-
straint 5b, which is required to recast the SC into the
rGMA. This constraint can be easily handled by means
of relaxation techniques and exponential transforma-
tions similar to those used by the authors in their global
optimization algorithms for pure GMA models [32,33].
In particular, two algorithms were developed for the glo-
bal optimization of GMA models: a customized outer-
approximation (OA, [30]) and a tailored spatial branch-

Figure 2 Equivalent optimal solutions for the case S1-O1-v4. Blue points indicates results on the original SC model obtained with BARON.
Red points identify solutions obtained for the corresponding rGMA and OA method (see text for details).
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and-bound (sBB, [32]). The authors showed that the
numerical performance of these methods depends on
the specific problem being solved, and that none of
them is clearly better than the other one. Here, we use
the OA algorithm to solve 6, as this method proved to
be faster than sBB for problems of smaller size ([32]).
Again, the main body of the algorithm was coded in
GAMS 23.0.2, using CPLEX 11.2.1 as MILP solver for
the master subproblems and CONOPT 3.14 s as NLP
solver for the slave subproblems of the algorithm. For a
fair comparison, we also set a tolerance of 0.2%, the
same as when using BARON.
As can be seen in Table 2, the optimization of the

rGMA formulation using our customized OA yields
similar results to those obtained when BARON is
applied to the original SC model. In some cases, signifi-
cant reductions in computational time are attained with
our OA algorithm. While BARON took a total time of
407.68 CPU seconds for solving the 8 instances, the cus-
tomized OA algorithm solved the same problems in 8.5
CPU seconds.
Note that the objective function values obtained with

the SC and rGMA models only differ within the toler-
ance imposed. In some cases, discrepancies regarding
the enzymatic profiles calculated are observed mainly
due to the system’s structure, that is, to the fact that the
problem contains multiple solutions attaining the same
performance in terms of objective function value but
involving different enzymatic configurations, as dis-
cussed in section 2.3.
To further investigate this issue, we apply the multi-

solution capability of BARON to the rGMA model (Fig-
ure 2). Again, different equivalent optima are obtained,
but this time the dispersion of the equivalent solutions
generated for a given case tend to concentrate either in
the center or in the extremes of the region containing
the solutions with the same objective function value cal-
culated with the SC model.

The region illustrated in Figure 2 should not be mis-
understood as a feasibility region. In fact, solutions do
exist outside this region, but they lead to worse objec-
tive function values. To further clarify this issue, we
consider a grid of values for k2 and k5 in the region
defined by constraints 4 ≤ k2 ≤ 5 and 0.2 ≤ k5 ≤ 0.8,
and solve the optimization problem within each cell
applying BARON to the SC model, and our OA to the
rGMA model. Recall that these linear constraints
define a region that contains that in Figure 2. The
results obtained in this optimization are illustrated in
Tables 3 and 4, and are exactly equal for both meth-
ods. However, the CPU time is much lower when
using our OA algorithm applied to rGMA (11,811
CPU seconds for generating all the points with
BARON applied to the SC model vs 17 CPU seconds
with the customized OA applied to the rGMA model;
as shown in Tables 5 and 6).

2.6 Difficult optimization tasks can be solved via
recasting
The reference model can be optimized either by general
purpose techniques or by rGMA specific methods such
as the customized OA. However, even with this simple

Table 2 Results for the maximization of X3 and v4 using
the rGMA model and optimization goals O1-O4 using the
customized OA for a tolerance of 0.2%

O k1 k2 k3 k4 k5 k6 X3 OG (%) CPU (s)

1 0.26 5.00 5.00 0.20 0.20 0.20 8.30 0.20 2.94

2 0.21 0.22 0.21 0.20 0.20 0.20 1.10 0.00 0.06

3 0.60 5.00 5.00 0.53 0.20 0.24 5.40 0.13 2.35

4 1.00 1.05 0.97 0.92 1.00 1.00 1.10 0.00 0.23

O k1 k2 k3 k4 k5 k6 v4 OG (%) CPU (s)

1 3.96 5.00 5.00 5.00 0.20 2.99 37.47 0.00 0.16

2 3.22 3.55 5.00 4.99 0.20 0.21 31.33 0.17 0.66

3 0.68 1.79 1.12 1.27 0.20 0.21 6.60 0.00 0.12

4 1.16 1.00 1.34 1.34 1.00 1.00 7.61 0.11 1.98

Table 3 Results (objective function) of the optimization
of case O1- v4 for specific regions of k2 and k5 obtained
with BARON for the SC model

k5/k2 1 2 3 4 5 6 7 8

8 36.50 36.71 36.90 37.08 37.24 37.37 37.47 37.47

7 36.62 36.83 37.02 37.19 37.34 37.46 37.47 37.47

6 36.75 36.95 37.14 37.31 37.44 37.47 37.47 37.47

5 36.88 37.08 37.26 37.41 37.47 37.47 37.47 37.47

4 37.02 37.21 37.38 37.47 37.47 37.47 37.47 37.47

3 37.15 37.34 37.47 37.47 37.47 37.47 37.47 37.47

2 37.29 37.46 37.47 37.47 37.47 37.47 37.47 37.47

1 37.43 37.47 37.47 37.47 37.47 37.47 37.47 37.47

Domain of each kr(4 ≤ k2 ≤ 5;0.2 ≤ k5 ≤ 0.8) has been split into 8 intervals
with equal width.

Table 4 Results (objective function) of the optimization
of case O1-v4 for specific regions of k2 and k5 obtained
with the customized OA for the rGMA model

k5–k2 1 2 3 4 5 6 7 8

8 36.50 36.71 36.90 37.08 37.24 37.37 37.47 37.47

7 36.62 36.83 37.02 37.19 37.34 37.46 37.47 37.47

6 36.75 36.95 37.14 37.31 37.44 37.47 37.47 37.47

5 36.88 37.08 37.26 37.41 37.47 37.47 37.47 37.47

4 37.02 37.21 37.38 37.47 37.47 37.47 37.47 37.47

3 37.15 37.34 37.47 37.47 37.47 37.47 37.47 37.47

2 37.29 37.46 37.47 37.47 37.47 37.47 37.47 37.47

1 37.43 37.47 37.47 37.47 37.47 37.47 37.47 37.47

Domain of each kr(4 ≤ k2 ≤ 5;0.2 ≤ k5 ≤ 0.8) has been split into 8 intervals
with equal width.
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example, we may encounter instances that are hard to
solve using standard techniques. Consider, for instance,
the same reaction scheme as before but this time with the
alternative parameters indicated in the following model:

dX1

dt
=

11.11k1X2.86
5

X2.86
5 + 0.81

− 12.35k2X1.54
1(

X1.54
1 + 0.61

)
X6.81

3

(
0.11 +

1

X6.81
3

)

dX2

dt
=

12.35k2X1.54
1(

X1.54
1 + 0.61

)
X6.81

3

(
0.11 +

1

X6.81
3

)

− 4.44k3X4.14
2

X4.14
2 + 0.11

− 7.41k5X0.51
1 X26.51

2(
X0.51

1 + 0.19
) (

X26.51
2 + 0.11

)
dX3

dt
=

4.44k3X4.14
2

X4.14
2 + 0.11

− 4.44k4X4.14
3

X4.14
3 + 0.11

dX4

dt
=

7.41k5X0.51
1 X26.51

2(
X0.51

1 + 0.19
) (

X26.51
2 + 0.11

)

− 6.67k6X1.57
4

X1.57
4 + 1.40

(8)

The optimization task of interest being:

• O5: Which is the optimal pattern of changes in
enzyme activities that maximize v6 in the new
steady-state for a fixed value of X5 and considering
the following constraints?

0.3 ≤ X1 ≤ 30
0.1 ≤ X2 ≤ 10
0.1 ≤ X3 ≤ 10
0.6 ≤ X4 ≤ 50
0.1 ≤ kr ≤ 20 r = 1, ..., p

(9)

When BARON is employed to solve this case using
the native SC form, it cannot reduce the optimality gap

below the specified tolerance after 1 hour of CPU time.
In contrast, when the model is recast into its rGMA
form and our OA method is applied, the global opti-
mum can be determined with an optimality gap of 2%
in 10.95 seconds (see Table 7). This illustrates both, the
utility of using the rGMA as a canonical form for deal-
ing with the optimization of SC models, and the compu-
tational efficiency of our global optimization methods
specifically designed to take advantage of the mathema-
tical structure of the GMA.

3 Discussion
While experimental tools to manipulate gene expression
are already available, there is no established set of guide-
lines on how these tools can be used to achieve a cer-
tain goal. So far, two main difficulties have prevented
model driven optimization from becoming a standard in
providing such guidelines: (i) the lack of information to
build detailed kinetic models and (ii) the computational
difficulties that arise upon the optimization of such
models. The latter can be exemplified by the application
of mixed integer non-linear optimization techniques
(MINLP) in the context of kinetic models presented in
[34,35]. In such cases, the optimization task showed to
be computationally very demanding and global optimal-
ity could not be guaranteed in many cases. We propose
that using models with a standardized structure may
offer a solution to both problems. On one hand, approx-
imate kinetics, such as the SC formalism, can provide
very accurate approximations and retain key features of
the system like saturation and cooperativity. On the
other hand, these formalisms can be automatically recast

Table 5 Results (CPU time in seconds) of the optimization
of case O1- v4 for specific regions of k2 and k5 obtained
with BARON for the SC model

k5/k2 1 2 3 4 5 6 7 8

8 212.53 308.53 185.64 201.80 222.30 201.53 139.16 178.31

7 194.81 161.16 215.80 196.81 344.73 243.02 0.03 174.81

6 234.30 203.75 147.08 180.69 328.34 254.42 304.11 280.53

5 212.08 282.41 329.33 237.34 208.02 292.27 200.00 154.62

4 288.00 160.14 92.94 235.80 172.69 147.14 56.11 150.28

3 125.56 111.17 150.27 187.52 337.97 158.16 112.66 264.12

2 239.70 190.59 100.03 138.47 106.38 205.14 119.39 246.34

1 140.42 102.12 80.45 21.69 73.12 96.61 89.94 80.03

Domain of each kr(4 ≤ k2 ≤ 5;0.2 ≤ k5 ≤ 0.8) has been split into 8 intervals
with equal width.

Table 6 Results (CPU time in seconds) of the optimization
of case O1-v4 for specific regions of k2 and k5 obtained
with the customized OA for the rGMA model

k5/k2 1 2 3 4 5 6 7 8

8 0.13 0.27 0.23 0.18 0.17 0.19 0.28 0.28

7 0.26 0.28 0.28 0.26 0.28 0.23 0.32 0.25

6 0.32 0.30 0.28 0.28 0.27 0.23 0.19 0.25

5 0.31 0.21 0.25 0.25 0.26 0.28 0.27 0.29

4 0.25 0.27 0.32 0.30 0.25 0.27 0.26 0.28

3 0.20 0.22 0.28 0.28 0.29 0.30 0.19 0.53

2 0.28 0.25 0.19 0.19 0.22 0.17 0.30 0.25

1 0.23 0.24 0.26 0.27 0.23 0.21 0.24 0.31

Domain of each kr(4 ≤ k2 ≤ 5;0.2 ≤ k5 ≤ 0.8) has been split into 8 intervals
with equal width.

Table 7 Results of the optimization of model 8 with
BARON (SC model) and the customized OA (rGMA model)

Solver k1 k2 k3 k4 k5 k6 OF OG (%) CPU (s)

BARON (SC) 6.24 5.16 0.46 0.6 8.46 9.09 60.36 45.18 3600

OA (rGMA) 6.25 5.17 0.45 0.6 8.44 9.1 60.46 2.18 10.95
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into GMA form and using efficient global optimization
methods developed specifically for this canonical repre-
sentation. Although this technique will certainly have
limitations, our previous results indicate that it can be
applied to models of moderate complexity without
major problems [32]. Optimization of GMA models
comprising up to 60 reactions and 40 metabolites offer
no limitation to our technique. We have shown how
these methods can be easily used to optimize SC via
recasting into rGMA models while still being quite
efficient.
Our results can be of particular interest for dealing

with multicriteria optimization on realistic models. This
kind of problems are relevant when exploring the adap-
tive response to changing conditions, were conflictive
goals may be at play [39,40]. Particularly, we should
notice that several multi-objective optimization techni-
ques, such as the weighted sum or epsilon constraint
methods [41] are based on solving a set of auxiliary sin-
gle-objective problems. These approaches could directly
benefit from the numerical advances presented in this
work. This kind of problems are relevant when explor-
ing the adaptive response to changing conditions, were
conflictive goals may be on play [39,40]. The highly effi-
cient OA algorithm applied to rGMA models provide a
practical way for extending multicriteria optimization
methods, for instance as used in [39], to non-linear
kinetic models. It is in principle possible to make use of
methods such as ours to analyze the optimality of large
scale dynamic systems much in the same way that Flux
Balance Analysis can be applied to analyze the stoichio-
metry of an organism on a genomic scale. To make this
possible, however, extensive experimental and modeling
efforts would be required to characterize the most
important properties of the involved processes. In fact,
we anticipate that practical limitations to apply the tech-
niques presented here in solving larger problems will be
dominated by the lack of information about the compo-
nent processes and metabolites rather than by the tech-
nical capacity of the optimization technique presented
here. Although a complete kinetic characterization of
the processes in a complete metabolic network may yet
be far, information on kinetic orders and saturation
fractions is easier to obtain. In this context, the SC
formalism provides a sound approximation that results
in a mathematical representation useful for simulation
and optimization through recasting.

4 Conclusions
We expect that the possibility of building models using
non-linear approximate formalisms and of subsequently
optimizing these models will trigger interest in the
experimental characterization of the components of cel-
lular metabolism. After the genomic explosion, we need

to step back and begin to measure enzyme activities,
metabolite levels, and regulatory signals on a larger scale
than we used to do before, if we want to understand the
emergence of the dynamic properties of biological sys-
tems and to be able to develop successful biotechnologi-
cal applications.

5 Methods
5.1 Modelling strategies
The process of model building and optimization can be
used to understand how a system should be changed in
order to achieve specific biotechnological goals or how
the same system has evolved in order to more efficiently
execute a given biological function. Different trade-offs
are considered during the modeling process. On the one
hand, one wants to use models that are as simple as
possible to guarantee numerical tractability. Unfortu-
nately simplifications may lead to models whose accu-
racy is only ensured for a limited range of physiological
conditions. On the other hand, models that are very
detailed and accurate over a wide range of physiological
conditions are typically more difficult to analyze and
optimize. Needless to say, the type of modeling strategy
and the model one chooses to implement have a large
impact on the results of the analysis. The most widely
used strategies in the context of optimization are: (1)
Stoichiometric models, (2) Kinetic models, and (3)
Approximated models.
The three strategies have as a starting point a set of

ordinary differential equations, in which the dependent
variables or nodes are the chemical species whose dyna-
mical behavior one is interested in studying. For a sys-
tem with n dependent variables, p processes and m
independent variables, the node equations are written as
follows:

Ẋi =
p∑

r=1

μirvr i = 1, .., n (10)

μir stands for the stoichiometry of each metabolite Xi

in each reaction r with respect to metabolite i and can
be derived from the reaction scheme.
At this stage, the various strategies begin to differ in the

way that they implement and analyze the equations. Typi-
cally, Flux balance analysis (FBA) and related techniques
consider only the steady state behavior of the system, and
treat vr as a variable whose value can be changed in order
to optimize specific steady state constraints. To accom-
plish this, FBA-like methods attempt to find solutions for
the following system of linear equations:

0 =
p∑

r=1

μirvr i = 1, .., n (11)
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This system of equations is solved under different
assumptions. A typical problem is that of understanding
the effect of knocking out different genes from the sys-
tem. This analysis can be performed by setting vr = 0
for the process(es) that depend on the product of the
genes that are knocked out. Once these constraints are
set, linear optimization techniques can be used to iden-
tify the region of the variable space that satisfies the
steady state and optimizes at the same time a set of spe-
cific measurable aspects of the systems [42-44]. It must
be noted that FBA analysis of Eqn. (11) does not
account for the regulatory effects that can result from
gene knockout and it cannot be used to predict changes
in metabolic concentrations and temporal responses.
Thus, optimization constraints are limited to steady-
state fluxes [15].
To overcome these limitations, we must use more

complex kinetic models where the effect of changing the
values of the variables on the fluxes is taken into
account. This requires defining a functional form for
each vr in Eqn. (10). Often, this functional form is
drawn from a number of classical enzyme kinetic rate-
laws. As a result, we use an approximate expression for
the kinetic behavior of each elementary process whose
form depends on the underlying mechanism of the pro-
cess. The reason for this is that the classical rate laws
are rational functions of the variables and they are built
upon different types of simplifying assumptions on the
detailed mechanism of the reactions. Such assumptions
range from considering that the elementary chemical
steps of the catalytic process occur at very different
timescales to assuming that the concentration of the
catalyst and of the reactants differ in orders of magni-
tude. Thus, rate laws such as the popular Michaelis-
Menten are approximations to the actual mechanism in
specific conditions. However, more often than not, one
does not have enough information to judge if such con-
ditions meet those one is trying to model. Thus, using
rational enzyme kinetics in models lacks a sound theore-
tical ground. In fact, within the complex architecture of
the intracellular milieu, many of the assumptions that
justify these classical rate-laws may not hold [45-47].
Even in the best case scenario where a detailed kinetic
model using classical enzyme kinetics can be derived
and numerically identified, it may be hard to globally
optimize that model using general purpose algorithms.
As we will show here, available optimization techniques
may fail to solve fairly trivial optimization tasks even in
simple models. These numerical difficulties can be over-
come by defining reformulated models based on canoni-
cal representations that are easier to handle using
customized global optimization algorithms devised for
specific canonical functional forms.

As an alternative, theoretically well supported canoni-
cal representations can be derived using approximation
theory. One type of such representations are power-law
models. In a power-law model, each vr in Eqn. (10) is
approximated as [19,21]:

vr(X1, .., Xn, ...Xn+m)

≈ γr

n+m∏
j=1

X
fjr
j r = 1, .., p

(12)

This approximation is derived at a given operating
point (X10 , X20 , .., X(n+m)0

) as a first-order Taylor series
representation of the target function in log-log space.
This approximation can generate models with different
representations. The two that are most commonly used
are the S-system representation and the GMA represen-
tation. The S-system representation is obtained by
lumping the various processes that contribute to the
synthesis of a given metabolite into a global process of
synthesis V+

i and those that contribute to the utilization
of a given metabolite into a global degradation process

Ẋi =
p∑

r=1

μirvr

=
p∑

r=1

μ+
irvr −

p∑
r=1

μ−
ir vr

= V+
i − V−

i i = 1, .., n

:

Ẋi =
p∑

r=1

μirvr

=
p∑

r=1

μ+
irvr −

p∑
r=1

μ−
ir vr

= V+
i − V−

i i = 1, .., n

(13)

Then, the aggregated processes are represented by
power-law functions:

Ẋi = αi

n+m∏
j=1

X
gij

j −

βi

n+m∏
j=1

X
hij

j i = 1, .., n
(14)

Alternatively, the GMA form is obtained representing
each individual vr as a power-law:

Ẋi =
p∑

r=1

μirvr

=
p∑

r=1

⎛
⎝μirγr

n+m∏
j=1

X
frj
j

⎞
⎠ i = 1, .., n

(15)
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The parameters in these representations have a clear
physical interpretation. Kinetic orders, the exponents in
the power-laws, are local sensitivities of the fluxes,
either individual (frj for vr) or aggregated (gij for V+

i and
hij for V−

i ), with respect to Xj. Rate-constants (ai, bi and
gr) are parameters that are computed so that the flux in
the model at steady state is equal to the operating flux
at the operating point for the metabolites. Parameter
estimation techniques have been developed so that
power-law parameters can be calculated from experi-
mental measurements [13]. It should also be noted that
the use of estimation procedures (i.e., least-squares),
alternate regression or similar procedures to estimate
power-law parameters from dynamic curves lead to a
power-law representation that is no longer local accord-
ing to the classical definition [48-50]. Those models
may, by definition, slightly improve their accuracy over
strictly local models.
To complement the power-law approach, the Satur-

able and Cooperative (SC) formalism was introduced by
Sorribas et al. [23] as an extension of the ideas that led
to the power-law formalism. The SC representation of a
given velocity is:

vr(X1, .., Xn, ...Xn+m) ≈
Vr

n+m∏
j=1

X
nrj

j

n+m∏
j=1

(
Krj + X

nrj

j

) (16)

This representation can be obtained from a power-law
model defined at a given operating point X0 = (X10,.., X

(n + m)0) through the following relationships:

nrj =
frj

1 − prj
r = 1, .., p

j = 1, .., n + m
(17)

Krj =
1 − prj

prj
X

nrj

i0 r = 1, .., p

j = 1, .., n + m
(18)

Thus SC uses the same information as the power-law
except for the new parameters prj (saturation fractions),
which are defined as:

prj = vr0/Vrj r = 1, .., p
j = 1, .., n + m

(19)

where vr0 = vr(X10,.., Xn0,... X(n + m)0) and Vrj is either
the limit velocity (saturation) when Xj ® ∞ if nrj > 0, or
the limit velocity when Xj ® 0 if nrj < 0.
Using SC models for global optimization can raise

some numerical issues. These difficulties can be avoided
to a large extent by recasting SC models into a

canonical GMA model, through the introduction of aux-
iliary variables, as will be shown in the next section.

5.2 Recasting non-linear models into power-law canonical
models by increasing the number of variables
Non-linear models can be exactly recast into GMA or S-
system models through the use of auxiliary variables
[36]. As a result, the final model is an exact representa-
tion of the original model, written in a canonical form.
In other words, the resulting GMA model is not an
approximation to the original model: it is an exact
replica of it. To avoid confusion, hereafter, we refer to a
GMA model that exactly recasts another as an rGMA
model.
As a very simple introductory example, consider a lin-

ear pathway with two internal metabolites X1 and X2

and a source metabolite X3 (Figure 3). In this pathway,
X2 is a competitive inhibitor of the synthesis of X1 from
the source metabolite. A generic model using Michaelis-
Menten kinetic functions, assuming a competitive inhi-
bition of the first reaction by X2, can be written as:

Ẋ1 =
V1X3

K1(1 + Ki/X2) + X3

− V2X1

K2 + X1

Ẋ2 =
V2X1

K2 + X1
− V3X2

2

K2
3 + X2

2

(20)

in which X3 is an externally fixed variable.
Recasting this model as a rGMA can be done as fol-

lows. First, let us define three new variables:

X4 = K1(1 + Ki/X2) + X3

X5 = K2 + X1

X6 = K2
3 + X2

2

(21)

We can now write the model in 20 as:

Ẋ1 = V1X3X−1
4 − V2X1X−1

5

Ẋ2 = V2X1X−1
5 − V3X2

2X−1
6

(22)

with initial conditions X1(0) = X10 and X2(0) = X20.

Figure 3 A simple linear network.
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To complete the recasting we must now provide the
equations that follow the change in the new variables
over time. These are given by the following equations:

Ẋ4 = −K1KiẊ2

X2
2

= V3K1KiX
−1
6 − V2K1KiX1X−1

5

X−2
2 Ẋ5 = Ẋ1

= V1X3X−1
4 − V2X1X−1

5

Ẋ6 = 2X2Ẋ2

= 2V2X1X2X−1
5 − 2V3X3

2X−1
6

(23)

with initial conditions X4(0) = K1(1 + Ki/X20 ) + X30,
X5(0) = K2 + X10, and X6(0) = K2

3 + X2
20
.

The resulting rGMA model (22-23) is an exact repre-
sentation of model in (20). Hence, for a set of appropri-
ate initial conditions, the simulation of the dynamic
response using either the model recast as a rGMA or
the original model will produce the same trajectory. In
principle, any non-linear model can be recast into a
rGMA following a similar procedure [36]. This can be
extremely useful, because it allows for the application of
tailored global optimization procedures originally
devised for GMA models [28-30,32,51,52] to generic
non-linear models.
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Abstract

Optimization models in metabolic engineering and systems biology focus typically on optimizing a unique

criterion, usually the synthesis rate of a metabolite of interest or the rate of growth. Connectivity and non-

linear regulatory effects, however, make it necessary to consider multiple objectives in order to identify

useful strategies that balance out different metabolic issues. This is a fundamental aspect, as optimization

of maximum yield in a given condition may involve unrealistic values in other key processes. Due to the

difficulties associated with detailed non-linear models, analysis using stoichiometric descriptions and linear

optimization methods have become rather popular in systems biology. However, despite being useful,

these approaches fail in capturing the intrinsic nonlinear nature of the underlying metabolic systems and

the regulatory signals involved. Targeting more complex biological systems requires the application of

global optimization methods to non-linear representations. In this work we address the multi-objective

global optimization of metabolic networks that are described by a special class of models based on the

power-law formalism: the generalized mass action (GMA) representation. Our goal is to develop global

optimization methods capable of efficiently dealing with several biological criteria simultaneously. In order

to overcome the numerical difficulties of dealing with multiple criteria in the optimization, we propose

a heuristic approach based on the epsilon constraint method that reduces the computational burden of

generating a set of Pareto optimal alternatives, each achieving a unique combination of objectives values.

To facilitate the post-optimal analysis of these solutions and narrow down their number prior to being

tested in the laboratory, we explore the use of Pareto filters that identify the preferred subset of enzymatic
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profiles. We demonstrate the usefulness of our approach by means of a case study that optimizes the

ethanol production in the fermentation of Saccharomyces cerevisiae.

Introduction

Genetic manipulation of microorganisms for obtaining improved strains involves expensive and time con-

suming experiments that have typically relied on trial-and-error mutagenesis and selection of promising

variants. Nowadays, mathematical models of cell metabolism and gene regulation circuits have become

reliable enough for metabolic engineering applications [1–3]. These models can be coupled with optimiza-

tion algorithms in order to identify the most promising genetic manipulations leading to an enhanced

phenotype in a given microorganism. This approach requires defining a suitable objective function, for

instance the maximum yield or flux of interest. Optimization is then performed by considering the model

equations describing the microorganisms’ metabolism and a set of constraints relevant for cell viabil-

ity [4–8]. This method provides, a sound theoretical basis for experimentalists on the best strategies for

manipulating the biological system, either by changing enzyme levels through genetic manipulations or

by altering environmental conditions [9].

The selection of an appropriate mathematical model is a crucial step towards success in this field. Two

main strategies can be followed at this stage. On the one hand, one can choose mathematical simplicity

and a genome-wide scope. In this context, flux balance analysis (FBA) provides an appropriate solution.

This method makes use of stoichiometric models to represent the metabolic networks, which gives rise to

mixed-integer linear formulations (MILP) that are easy to solve with standard techniques [10]. This MILP

approach, however, fails at capturing the regulatory loops existing in metabolic networks [11]. On the

other hand, one can choose a kinetic detailed description, which necessarily will be limited to relatively

few pathways at a time. Detailed kinetic models can deal with all kind of regulatory signals and reaction

mechanisms, but involve nonlinear equations (e.g., Michaelis-Menten, Hill or power-law, etc.) required to

appropriately represent the reaction rates as a function of the involved metabolite concentrations. These

nonlinearities give rise to nonconvexities which in turn lead to the potential existence of multiple local

optima (i.e., multimodality). This may prevent standard algorithms from identifying the global optimum,

as they can get trapped in local wells during the search. Global optimization strategies overcome this

limitation, guaranteeing convergence to the global optimum within a desired tolerance. It should be
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emphasized that global optimization is of paramount importance in these theoretical biological studies

since misidentifying a local optimum as the global one may lead to spurious conclusions [12, 13].

For S-Systems models, a particular class of power-law models, Voit [4] proposed a reformulation

strategy based on a logarithmic transformation that brings the model to an LP/MILP form, making

it possible to apply standard optimization methods that ensure global optimality. This reformulation

cannot be applied to other non-linear models, such as GMA models or detailed kinetic models. These

last models must be tackled though using global optimization methods. One such method for GMA

models based on an outer approximation algorithm was proposed by Polisetty et al. [8]. Guillén-Gosálbez

and Sorribas [12] presented further developments using an outer approximation-based algorithm [14] and

related advanced strategies [12,15] to globally optimize GMA models. These methods have been recently

extended further to deal with detailed kinetic models through a mathematical reformulation framework

termed recasting that converts them into GMA models [13].

Biotechnology studies typically seek optimizing a single flux in the metabolic network as unique crite-

rion. In practice, however, there are other criteria of interest for experimentalists, such as minimizing the

number of enzymatic changes, metabolic concentration of intermediates [16] or transient times [17]. De-

spite the importance of such additional criteria, the majority of works in metabolic engineering are based

on single-objective formulations. Although some of these functional criteria can be treated as constraints

ensuring cell viability, they should be treated as additional objectives [18]. This would eventually allow

for the identification of solutions in which cell viability is further improved at the expense of marginal

reductions in other objectives such as growth.

The importance of multiobjective optimization in metabolic studies has been pointed out by several

authors [19–21]. Technically, the solution of a multiobjective optimization (MOO) problem is given by

a set of points known as the Pareto set. All these solutions feature the property that it is not possible

to find another one that improves any of them in one objective without worsening at least one of the

others (see Figure 1). Because of the presence of continuous variables, optimization problems arising

in metabolic engineering may have an infinite number of Pareto-optimal solutions. Clearly, testing all

these alternatives in the laboratory would be prohibitive in terms of time and resources. Multi-criteria

decision-making (MCDM) can be of great help at this stage to rank and/or screen alternatives, ruling

out the less promising and keeping the best. Unfortunately, the complexity of both, MOO and MCDM,

increases with the number of objectives. In practice, the visualization and analysis of the Pareto set
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becomes highly difficult in problems with more than three objectives. The need for advanced methods

to support these tasks in biochemical systems has already been acknowledged [21, 22].

Several approaches have been proposed for identifying a subset of Pareto solutions of special interest

for decision-makers. For instance, Branke et al. [23] and later Deb [24] suggested either to specify the

extreme pair-wise trade-off information about objectives or to attach relative weights to them, in order

to concentrate the search in a particular region of the Pareto set. Branke and Deb [25] proposed a

projection-based method to obtain a biased distribution of Pareto solutions. Farina and Amato [26]

introduced a more restrictive dominance concept that produces less number of Pareto solutions. Branke

et al. [27] introduced a method for obtaining those Pareto solutions with a significantly different slope

(i.e., ”knee” solutions). Deb and Gupta [28] focused on identifying robust (i.e. less sensitive to parameter

changes) solutions. The concept of Pareto filter was also employed by several authors for eliminating

non-Pareto or locally optimal Pareto solutions [29–33].

MOO and MCDM have been extensively studied in the context of a wide variety of engineering

problems (for instance, refer to [34]). In contrast, their application to metabolic engineering has been

quite scarce [35]. In this work, we address the MOO of metabolic networks. Our study assumes a

GMA model of the target metabolic network where all model parameters are known. These include

the stoichiometric coefficients of the reactions involved in the production/consumption of each internal

metabolite; and the parameters of the power-law formalism that model the kinetics of each reaction at the

basal state. Then, we will seek the optimization of a given flux assuming two important complementary

objectives: (i) We assume that any increment in gene expression is a limiting factor for the cell as it

involves an important metabolic burden; (ii) We also consider that an excessive increment in intermediate

concentrations compromises cell viability. These two criteria will be used as complementary objectives

that should be minimized when possible.

Under these conditions, we aim to develop a systematic framework to (i) calculate the Pareto front of

the kinetic metabolic model in this multi-objective problem and (ii) identify from it a small enough set of

the most promising changes in enzyme activity to be tested in the laboratory. In other words, the goal of

this analysis is to determine a set containing the preferred enzymatic profiles that optimize the synthesis

rate of a metabolite at minimum cost (minimum number of changes in these activities, i.e. minimum

change in gene expression) and minimum increase in the concentration of intermediate metabolites.

Note that there are two main difficulties associated with the identification of such set. First, we need
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to solve a high dimensional non-convex multiobjective optimization problem in which several criteria

must be simultaneously minimized. This problem is challenging not only because of the high number of

objectives, but also due to the existence of non-convexities. Second, even if a sufficiently large number

of Pareto solutions can be identified, there is still the issue of analyzing and interpreting them, in order

to keep the most promising for further evaluation in the laboratory. Deb and Saxena [36] reviewed the

main difficulties associated with the calculation and analysis of the Pareto solutions of MOO problems

with large number of objectives, like those arising in metabolic engineering. As will be shown later in

the paper, our systematic approach allows overcoming some of these difficulties.

In particular, our strategy relies on the combined use of multiobjective global optimization and Pareto

filters, which are both applied to metabolic networks described using the GMA formalism. The method

presented builds upon our global optimization framework for single-objective models of metabolic net-

works [14, 37], which is adequately modified herein to handle multiple objectives. This method is based

on an outer approximation algorithm that decomposes the target problem into a master MILP and a

slave NLP, which respectively provide lower bounds (LB) and upper bounds (UB) on the global optimum.

These bounds tend to approach as iterations proceed until a given tolerance is satisfied.

Note that our methodology shares some common features with that presented by [35] for S-Systems

models. However, while the former strategy ends with the generation of the Pareto optimal front, ours

goes one step beyond by suggesting a subset of preferred alternatives that are identified using Pareto

filters. Hence, this work presents advances in two main fronts: (i) the generation of Pareto optimal

solutions for multiobjective GMA models, and (ii) the identification of the most promising alternatives

using systematic filters.

The capabilities of the proposed methodology are illustrated in the optimization of the fermentation

of Saccharomyces cerevisiae considering 14 objectives. This process has been already studied in the past

by several authors. For instance, Send́ın et al. [35] used an ad-hoc model of this metabolic pathway to

address by means of different MOOmethods a 6-objective MOO problem considering the ethanol synthesis

rate and the concentration of 5 dependent metabolites. Most of the approaches compared therein show

some limitations, as they either rely on local solvers (this is the case of weighted sum, attainment goal

and NBI) or employ stochastic optimization methods (MOEA) that are unable to guarantee convergence

to the global optimum in a finite number of iterations, which may result in a spurious Pareto front.

The other method studied in that work (MIOM) requires the transformation of the original model into

74

UNIVERSITAT ROVIRA I VIRGILI 
GLOBAL OPTIMIZATION APPLIED TO KINETICMODELS OF METABOLIC NETWORKS 
Carlos Pozo Fernández 
Dipòsit Legal: T.1469-2012 
 



6

an S-Systems representation, which is something unnecessary when relying directly on GMA models.

Furthermore, we address here a more complex problem that accounts for 14 objectives (the fold-change

in 8 different enzyme activities, expressed as the absolute value of the natural logarithm of the enzyme

activity fold-change; the concentration of 5 dependent metabolites; and the ethanol synthesis rate). This

represents a significant advance compared to traditional biotechnological approaches that maximize the

ethanol yield and impose biological constraints for maintaining metabolites and enzymes levels around

their basal state so as to preserve cell homeostasis [9].

Results

In order to illustrate the capabilities of our approach we solved a case study that optimizes the ethanol

production in the fermentation of Saccharomyces cerevisiae. For this, steps 2 and 4 of the algorithm

proposed (refer to the Methods Section for further details) were coded in GAMS 23.2.0, while the normal-

ization step 3 was implemented off-line using Microsoft Excel. Numerical experiments were performed on

an Intel 1.2 GHz. The GMA model (Step 1) was retrieved from [8]. The reader is referred to this paper

for further technical details. Bounds on metabolite concentrations and changes in enzyme activities were

the same as those reported in [14].

Note that we assume that the GMA model is given. If this was not the case, a previous step would

be necessary to construct such a model from dynamic profiles using parameter estimation methods. We

should note also that the modeling software GAMS is a versatile tool that allows implementation of all

the framework’s steps, offering standard coding capabilities and interfacing with powerful optimization

solvers.

Obtention of the Pareto set

The MOO problem was solved using the epsilon constraint method, which was enhanced through a

heuristic procedure based on generating solutions for all possible bi-criteria subproblems. We defined 10

epsilon parameters for each objective, which gave rise to 910 single iterations (note that the same number

of objectives and epsilon intervals would lead to more than 1 · 1014 instances using the traditional epsilon

constraint approach). The outer approximation-based algorithm [14,37] was then employed to solve these

instances to global optimality. CPLEX 11.2.1 was used as MILP solver for the lower bounding master
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problem, and CONOPT 3.14s for the slave NLPs. All the sub-problems of the algorithm were solved

to global optimality within a tolerance of 0.2%, which is the same tolerance that we used in [14] for

the analogous single objective problem. A set of Pareto optimal solutions was finally obtained through

the above commented procedure. Figure 2 shows the 2D Pareto set for the maximization of Vethanol

vs minimization of hexose transporters (i.e. K1) changes. As observed, as we increase the value of K1

(recall that we are representing |ln(K1)|), the ethanol synthesis rate increases. In the same Figure, we

have also projected the points resulting from the other bi-criteria optimizations, that is, in Figure 2 we

have included also the points obtained from the optimization of Vethanol-K2, Vethanol-K3, ..., Vethanol-K8.

As observed, while there is a clear tendency in the points coming from one bi-criteria optimization, the

same is not true when we consider the remaining solutions generated by the other bi-criteria results.

Hence, while we can ”easily” analyze the trade-off between two single objectives, it is difficult to perform

the same analysis when several criteria come into play.

The Pareto set was next normalized (see the Section “Normalization of the Pareto optimal solutions”

in Methods) assuming a normal distribution for all objectives. We further assumed that the mean and

standard deviation are the same as those of the samples (i.e., the solutions generated with the epsilon

constraint method). Note that this brings the data to the [0,1] range. Figure 3 shows the box plot

associated with the normalized Pareto solutions. As seen, objective K2 shows a very small variability

(the 25th and 75th percentiles correspond to the same value, around 0.34, as the median). This implies

in turn that it is easy to obtain a good (i.e. small) value for this objective. The same happens in the

case of objectives K5, K7, X1, X3 and X4, for which the median and 25th percentile are also rather

close, indicating that the solutions are concentrated around their minimum values. On the contrary,

most solutions are allocated at high (i.e., poor) values of objectives K4, K8 and Vethanol, while very few

are close to their minimum values.

Selection of preferred subset of solutions

The Smart filter was applied next in order to remove indistinguishable solutions from the pool. The

application of this algorithm has also the effect of providing a more uniform spread of points. Note that

choosing larger values of tolerance ∆t will allow discarding more solutions from the pool, but this may

come at the expense of loosing valuable solutions (i.e., promising enzymatic profiles). To illustrate this,

we performed the calculations for two different values of ∆t. In particular, selecting a ∆t = 0.01 allowed
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to reduce the size of the Pareto set from 910 to 611 solutions, whereas only 321 solutions were retained

for a ∆t = 5.00. We found that using a ∆t = 5.01 resulted in an excessive loss of information in this case

study, and hence, kept the results obtained with a ∆t = 0.01.

We next resort to the second type of Pareto filter: the order of efficiency filter. We started by imposing

a Q = 13 (i.e., Q = NO − 1), and searched for nondominate solutions in any of the Q-elements subsets

of objectives. This narrowed down the number of Pareto solutions from 611 to 214 alternatives. The

procedure was repeated for decreasing values of Q until an empty set of solutions was identified, which

occurred for a value of Q = 10. In particular, 14 solutions were found to be efficient of order 12, while

only 1 solution was efficient of order 11.

Figure 4 shows the minimum and maximum objective values among those solutions retained for a

given Q. This plot provides valuable insight on how much quality is lost as we decrease efficiency order.

The closer the lower bound curve of a set of solutions is to the lower bound curve of the original set, the

better is the quality of the set, as this implies that such set contains solutions with objective function

values close to the best possible performance that can be attained in each criterion.

Particularly, the lower and upper limits of the 214 solutions efficient of order 13 are quite close to

the bounds corresponding to the 611 solutions of the Pareto set obtained using the Smart filter, showing

a small decrease (about 2%) in the ethanol synthesis rate with respect to the maximum possible value.

There are 14 solutions efficient of order 12 with a curve rather close in most objectives to that of the 611

original solutions. In this set, however, the ethanol synthesis rate drops by an additional 69%, which is

consistent with the trend observed in Figure 3. We should clarify that it is possible to artificially add in

the final pool of solutions any other alternative for further consideration, with special interest on those

with good performance in one criterion and poor in the others that are not efficient of order 12.

Remarkably, the only solution efficient of order 11 (which is not included in Figure 4) is not the closest

to the utopia point, that is, it is not the one with the minimum Euclidean distance to the utopia point,

which is a common criterion for selecting a single final candidate from a Pareto set.

Table 1 shows the values obtained for the 14 objectives in the solutions efficient of order 12. It can be

seen that some of the solutions are very close to the ethanol production rate of the basal solution (i.e.,

solution with the Kr values fixed to one), which turns out to be 30.11 mM min−1 [8]. The best solution

comprising only three changes in enzyme activity achieves a ethanol production rate of 37.68 mM min−1

and involves a 2.3 fold increase in E3 (which corresponds to a | ln(K3)|=0.84), and about a 5 fold increase
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in E5 and E7. A ethanol production rate of 42.88 mM min−1 can be achieved by changing four enzymes.

This leads to a 42% increase over the basal production rate. In this case, E3 must be modified by a

factor of 3.5, E4 5 times, E7 2.1 times, and E8 1.7 times approximately. Further increases in ethanol

production would require manipulating a larger set of enzymes. Single objective optimization focusing on

maximizing the ethanol production would obtain better yields, but would entail higher (costly) enzyme

changes and probably higher metabolic concentrations that would compromise the cell viability.

Discussion

In this paper, we have introduced a systematic framework for the multiobjective deterministic global

optimization of metabolic networks modeled through the GMA formalism. The proposed strategy inte-

grates the epsilon constraint method, deterministic global optimization tools, and a set of Pareto filters

that narrow down the final number of candidate solutions to be tested in the laboratory. The method

presented does not rely on any visualization procedure, being therefore suitable for problems with a large

number of objectives. The capabilities of the proposed approach were illustrated by means of a benchmark

problem that addressed the optimization of the ethanol synthesis rate in Saccharomyces cerevisiae.

Biological objectives, such as the concentration of intermediate metabolites and the enzymatic changes

were considered in addition to the ethanol synthesis rate. By selecting the auxiliary problems of the epsilon

constraint method in a smart way, we could reduce the computational burden considerably. Furthermore,

the Pareto filters allowed reducing the number of promising alternatives significantly from 910 to 14 (i.e.,

98% reduction), illustrating the usefulness of the approach in the post optimal analysis of the candidate

solutions. In different test problems, the outer approximation algorithm integrated in our systematic

framework efficiently solved problems with up to 30 independent metabolites and 60 reactions in short

CPU times (i.e., few minutes). Hence, we expect the method to scale up smoothly when tackling more

complex models, even though we have yet to explore its limits. Note, however, that genome-wide scale

problems are still beyond the capabilities of current deterministic global optimization methods. First,

there is a lack of kinetic data to build realistic genome scale models. Second, assuming the existence of

a detailed enough kinetic model, there is still the issue of solving it to global optimality in short CPU

time. For these reasons, genome scale models are usually solve via FBA, despite the known limitations

of this method. Nevertheless, we think that advances in deterministic global optimization theory and
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software applications will pave the way for more efficient algorithms leading to significant CPU savings,

which will make it possible to tackle complex genome scale kinetic models.

In summary, our approach allows for the global optimization of metabolic networks on different

objectives simultaneously. The method presented reduces the computational burden associated with the

generation of solutions, and facilitates the post-optimal analysis of these alternatives by systematically

identifying the best ones (i.e., more balanced) for subsequent experiments in the laboratory. Hence, our

method is particularly suited for problems of moderate size. Larger kinetic models could be tackled with

stochastic methods, but even if they are the method of choice, it will be still possible to use the Pareto

filters introduced in our work. However, we will not have any information on the quality of the solution

found. Finally, for genome-wide scale models, FBA might be the method of choice, despite having some

limitations already discussed in the literature.

Methods

Our systematic framework comprises the following steps (see Figure 5):

1. Model building and parameter estimation (optional): construct a GMA model for the targeted

metabolic network.

2. Global optimization of the GMA model on several biological criteria.

3. Normalization of the solutions obtained in step 2.

4. Application of Pareto filters to identify the preferred subset of alternatives.

The sections that follow describe in detail each of these steps.

Mathematical model: GMA representation

The optimization of the metabolic network is posed in mathematical terms as a multiobjective NLP (i.e.,

moNLP) that embeds GMA equations. Note that there are different possible ways to obtain this GMA

model. Particularly, we can follow a top-down approach, that is, find the parameters of a GMA model

that make it consistent with dynamic data by solving a parameter estimation problem. On the contrary,

we might be interested in following a bottom-up strategy and acquire the GMA model of interest from
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the literature. In what follows, we describe briefly the GMA formalism before presenting the details of

the moNLP.

We assume that the concentration Xi of every metabolite i present in a metabolic network varies with

time t as a result of the action of p flows:

dXi

dt
=

p
∑

r=1

µirvr i = 1, ..., n (1)

The stoichiometric coefficient, µir, appearing in Eq. 1 is an integer parameter accounting for the number

of molecules of metabolite Xi that are involved in the process r. It is positive when the reaction r

produces metabolite Xi and negative when r consumes Xi. Note that not all the p processes in the

metabolic network are directly involved in the production of every single metabolite Xi, which implies

that some parameters µir are zero (µir = 0) for some particular combinations of i and r. The velocity at

which process r occurs, is represented using the so-called power-law formalism [38–40] as in Eq. 2.

vr = γr

n+m
∏

j=1

X
frj
j r = 1, ..., p (2)

Here, γr is a parameter denoting the basal state activity of the enzyme governing process r, whereas

frj is the kinetic order of metabolite Xj in process r. This representation accounts for the n internal

dependent andm external (i.e., independent) metabolites. At this point, the concentration of the external

metabolites will be considered fixed. Thus, the term X
frj
j behaves as a variable for i = 1, ..., n and as a

parameter for i = n+ 1, ..., n+m. By combining Eq. 2 and Eq. 1, we obtain a GMA model (Eq. 3).

dXi

dt
=

p
∑

r=1



µirγr

n+m
∏

j=1

X
frj
j



 i = 1, ..., n (3)

To model the effect of genetic manipulations performed on the strain, we introduce an auxiliary continuous

variable, Kr that accounts for the fold-change over the basal state enzymatic level γr as follows:

vr = Krγr

n+m
∏

j=1

X
frj
j r = 1, ..., p (4)

Recall that, in Eq. 4, the product Krγr denotes the actual enzyme activity. Hence, the values of Kr

in the optimal solution will dictate the modification to be performed in the strain: Kr > 1 indicates
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overexpression of enzyme r, Kr < 1 denotes its downregulation, and a value of 1 means that enzyme r is

not manipulated. Furthermore, bounds KLB
r and KUB

r are imposed on this variables as stated in Eq. 5.

KLB
r ≤ Kr ≤ KUB

r r = 1, ..., p (5)

Similarly, metabolite concentrations are allowed to change within given bounds (XLB
i and XUB

i , respec-

tively):

XLB
i ≤ Xi ≤ XUB

i i = 1, ..., n (6)

Since we are interested in solving the steady state, the time dependence can be dropped from the

formulation:

dXi

dt
=

p
∑

r=1



µirKrγr

n+m
∏

j=1

X
frj
j



 = 0 i = 1, ..., n (7)

For demonstrative purposes, we assume that the main objective is to maximize the synthesis rate of

a desired product. This rate is calculated by summing up the velocities of those processes contributing

to its synthesis, as illustrated in Eq. 8.

min f1 = −
∑

r∈FPi

µirvr i ∈ FP (8)

Here, FP is the set of metabolites i that are regarded as final products and FPi is the set of processes

r contributing to the synthesis of metabolite i (i.e., those processes for which µir > 0). Note that,

for simplicity, we have posed the problem as a minimization one by reversing the sign of the objective

function.

Two additional criteria are appended to the objective function. The first is the minimization of the

metabolites concentrations, proposed as an optimality principle for metabolic networks [16]. Genetic

manipulation of many genes at once may be costly and technically difficult. To take this into account,

the model seeks to minimize the individual changes in enzyme activities. The resulting MOO problem

that embeds the GMA equations can be expressed in compact form as follows:

(moGMA) min (f1, ..., fNO)

s.t. Eqs.1, 4− 6
(9)
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Thus, model moGMA seeks the appropriate changes in enzyme activities (continuous variable Kr) that

maximize simultaneously the synthesis rate of the desired product and minimize the concentration of the

metabolites and changes in enzyme activities. Objective f1 represents the synthesis rate targeted, while

f2 to fNO denote the metabolites concentrations Xi and individual changes in enzyme activities. To

quantify deviations in enzyme activities from the basal state, we use the absolute value of the natural

logarithm of the fold-change in enzyme activities. The enzyme activities calculated by the model can be

later implemented in the real system by tuning the expressions of the corresponding genes.

The optimization problem takes the form of a nonconvex NLP, in which multiple local optima may

exist. We employ global optimization techniques to ensure global optimality within a desired tolerance.

Multiobjective global optimization of metabolic networks described by a GMA

model

In general, the Pareto set of a GMA model may be nonconvex due to the nonlinear kinetic equations.

Different MOO algorithms could be used to calculate this set (i.e., NBI [41], NNC [42]). We use herein the

epsilon-constraint method because unlike other methods, such as the weighted sum one, it can identify

points located in the nonconvex part of the Pareto set. Note that this property is also shared by the

more complex NBI and NNC methods, which also offer the appealing property of providing a uniform

spread of Pareto points. However, this limitation of the epsilon constraint is alleviated by coupling it

with a Smart filter (refer to Section “Smart filter” in Methods). We should clarify, however, that our

global optimization approach could work with other deterministic MOO algorithms, such as the NBI or

NNC.

In the epsilon constraint technique, one objective is regarded as main objective, while the rest are

transferred to auxiliary constraints that impose upper bounds εeb on their values:

(ecGMA) min fb b = 1

s.t. fb′ ≤ εeb′ e = 1, ..., E + 1 b′ = 2, ..., NO

Eqs.1, 4− 6

(10)

The εeb values appearing in the auxiliary constraints are commonly obtained as follows:

1. Solve problem moGMA for each individual objective separately.
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2. Store the best (fb) and worst (fb) values obtained in step 1 for each objective. These values are the

limits within which the auxiliary epsilon parameters must fall (i.e., εeb ∈ [fb, fb]∀e).

3. Split the epsilon interval into E subintervals to generate parameters εeb (i.e.,. ε
e
b = fb+(e−1)·

(fb−fb)

(E) ).

Note that step 1 provides the so-called anchor points, that is, the extreme solutions of the Pareto

frontier.

In the traditional epsilon constraint approach, problem ecGMA is solved for all possible combinations

of εeb, which leads to a total of (E+1)NO instances. The complexity of this approach grows exponentially

with the number of objectives. As an example, for 3 objectives and 4 sub-intervals, we have 125 iterations;

for 4 objectives and the same number of sub-intervals, we have 625, and for 5 objectives and identical

number of sub-intervals, we have 3125 iterations.

Here, we follow a heuristic approach for generating Pareto solutions that consists of solving a set

of bi-criteria problems corresponding to all possible combinations of any two objectives. This strategy

presents some advantageous features. First, the Pareto points generated in the two-dimensional space are

also Pareto optimal in higher dimensional spaces [34], and hence in the original NO-dimensional space.

Second, this approach requires solving
(

NO
2

)

·(E+1) single-objective models, rather than (E+1)NO, which

dramatically reduces the computational effort. For instance, it would reduce the number of iterations

required in the previous example from 125 to 15, from 625 to 30 and from 3125 to 60, respectively.

The epsilon constraint method transforms the MOO problem into a set of single-objective problems.

This is very convenient, since it makes it possible to apply our global optimization methods devised for

single-objective GMA models [14, 37] to multiobjective problems. In particular, in this work we use the

outer-approximation-based algorithm we developed in [14], which was inspired by the works of Polisetty

et al. [8] and Bergamini et al. [43].

Following this approach, the original problem (i.e., ecGMA in this case) is divided into two subprob-

lems at two different hierarchical levels. A master problem consisting of a linear relaxation of ecGMA is

solved in the upper level to predict a LB on the global optimum. A slave problem based on the original

model is then solved locally in the lower level using the solution of the master problem as starting point

in order to predict an UB. The solutions computed during the first iteration are used to tighten the

relaxation of the master problem, which will produce better LBs in subsequent iterations. The algorithm

proceeds in this manner until the optimality gap (OG, defined as the relative difference between the UB
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and the LB) is reduced below a given tolerance.

The most important step of the outer approximation is the construction of the master MILP problem.

This MILP is built by applying an exponential transformation that brings the model into a canonical form

that can be relaxed in a straightforward manner using piecewise linear approximations and supporting

hyper-planes. For the sake of brevity, technical details about this procedure are omitted herein. The

interested reader is referred to the original works by Pozo et al. [14, 37] for further details.

Normalization of the Pareto optimal solutions

A normalization procedure is applied to the Pareto set of solutions in order to bring them to the same

scale and units, so they become readily comparable. A plethora of alternative methodologies are available

for this purpose. One of the main drawbacks of normalization methods is that they tend to concentrate

the points in some regions of the feasible domain.

In a recent work, Cloquell et al. [44] presented a normalization methodology previously proposed in

another work [45] that aims at overcoming this limitation. According to this strategy, the normalized

value of a given solution s is calculated as follows:

fns,b = PDF (fb)(fb ≤ fs,b) (11)

Where fns,b is the normalized value associated with the non-normalized value fs,b, and DF (fb) is the

probability distribution function of the objective variable fb. The form of this distribution is assumed

beforehand, with the normal distribution being the common choice.

Pareto filters

The previous steps provide as output a set of normalized Pareto points. As mentioned previously, an

infinite number of such points may exist for problems involving continuous variables. Testing all of

them in the laboratory would be highly expensive and time consuming. Hence, a method is required

for screening and ranking then, narrowing down their total number. We explore the application of two

different Pareto filters. A Smart filter [46] is applied first to remove indistinguishable alternatives from

the pool. A second filter based on the order of efficiency of the Pareto solutions [47] is then employed to

identify solutions that are well-balanced, that is, they show ”good” performance simultaneously in all of
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the objectives.

Smart filter

Two arbitrary solutions that are rather close in the objective space might be equally appealing for decision-

makers, despite representing completely different experimental manipulations. If any of these is preferred

over the other because of differences in any of the required changes, this differentiating feature should

then be regarded as an additional objective [46]. A possible way to reduce the size of the Pareto set is

to eliminate solutions which are within a given tolerance in the objectives space, that is, solutions which

entail insignificant differences compared to others. Figure 6 illustrates the underlying idea behind this

filter. As seen in Figure 6a, a region is defined around each normalized solution FNs. Any other solution

FNs′ falling inside this region is said to be indistinguishable from FNs, and automatically removed from

the pool. Consider for instance the example presented in Figure 6b where a small set of solutions is

presented. We start by comparing solution FN1 with the rest, and then removing those contained inside

the shaded region defined around the reference point. After comparing all the points, we pick the next

candidate solution and repeat the procedure again. In this particular example, solution FN2 is found

within the specified tolerance of FN1 and FN5 is within the region defined by FN4.

To this end, we use the following algorithm, which is based on that presented by Mattson et al. [46]:

Let FNs be one of theNS normalized solutions of the normalized Pareto set (i.e., FNs = fns,1, ..., fns,NO)

obtained through steps 2 and 3 of the solution approach, and let SOS be the set containing all these

solutions. The application of the filter comprises the following steps.

1. Define tolerance ∆t, a set of rejected solutions SOR = ∅, a set of candidate solutions SOC = ∅ and

start iteration counters s = 0 and ss = 0.

2. While s < NS,

(a) s = s+ 1

(b) If @ FNs|FNs ∈ SOS, return to 2.a. Else:

(c) While ss < NS,

i. ss = ss+ 1

ii. If @ FNss|FNss ∈ SOS, return to 2.c.i. Else:
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iii. If s = ss, return to 2.c.i. Else, if fns,b − fnss,b ≤ ∆t ∀b, let SOR = SOR
⋃

FNss and

SOS = SOS\SOR.

(d) End while

(e) Restart iteration counter ss = 0.

3. End while

4. Make SOC = SOS

We should clarify that this algorithm is a special case of the one proposed by Mattson et al. [46], in

which the original ∆t and ∆r are assumed to be equal to ∆t. Furthermore, note that the value of this

control parameter is the same in all of the objectives, since the Pareto points are normalized prior to the

application of the filter.

This filter is particularly useful when coupled with the epsilon constraint method, as it alleviates its

tendency to concentrate points in given regions of the Pareto front, thus giving rise to a more uniform

spread of points.

Order of efficiency filter

The filter described above allows reducing the number of Pareto solutions. Further reductions can be

attained by applying the concept of order of efficiency, as introduced by Das [47]. A solution is said to be

efficient of order Q if it is not dominated by any other solution in any of the possible Q-elements subsets

of objectives. In mathematical terms, a solution Fs is said to be efficient of order Q, if and only if, @

Fs′ |Fs′ ≺ Fs for any subset of objectives of cardinality Q. In this definition, we consider that a solution

Fs dominates Fs′ (i.e., Fs ≺ Fs′ ) if and only if, fs,b ≤ fs′,b ∀b with at least one b in which fs,b < fs′,b.

Figure 7 provides an illustrative example of the concept of Pareto efficiency of order Q. Consider we

have a MOO problem with 5 biotechnological criteria: final product yield, aggregated cost of changing

the enzyme activities via gene expression, and concentration of 3 different metabolites (X1−X3). Assume

that the values of 3 different solutions (blue, read and green) have already been normalized as described

previously, so that the minimum value of each of the 5 objectives represents their individual optima. As

seen, the three solutions plotted are Pareto optimal since none of them can improve any of the others

simultaneously in all of the objectives. At this point, one can start eliminating solutions which are not

efficient of order Q = 4 by identifying sets of 4 objectives in which a given solution is dominated. For
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instance, the blue solution is dominated by the green and red ones in the set {yield,X1, X2, X3}. On the

other hand, the red solution is not efficient of order 3, since it is in turn dominated by the green one in

{yield,X1, X2}. Hence, the green solution is the only one that is efficient of order 3, while none of them

is efficient of order 2 (i.e., the green solution is dominated by the red one in {cost,X3}).

According to the definitions previously exposed, if a solution is efficient of order Q, it is also efficient

of order Q + L with L = 1, ..., NO − Q (see [47] for proofs). Note that the concept of efficiency of

order Q is stronger than the Pareto optimality condition [47], and can thus be used to discern between

efficient alternatives. Furthermore, this concept avoids the use of any arbitrary “criterion of merit” or

visualization technique, making it suitable for high-dimensionality problems [47].

We propose to apply this filter for searching efficient solutions of order NO − 1, and then repeat the

process recursively for successively inferior orders of efficiency until either an empty set is found or the

number of solutions retained is sufficiently small. As pointed out by Das [47], solutions with lower order

of efficiency are expected to be well-balanced. This is because solutions behaving well in some objectives

but poorly in others are expected to be dominated at least in the subsets including the latter criteria [47].
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Figure Legends

Figure 1. Generic Pareto front. Full blue points indicate members of the pareto set. Point (a) is
the optimum for objective function OF1 for a given value of OF2 (red points). Point (b) minimizes OF2

for another value of OF1 (compared to green points). For a member of the Pareto set, say (c), any
attempt to improve a goal involves worsening the other, point (d) for comparison. Empty blue points
are other possible solutions that are worse than those in the Pareto set.
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Figure 2. Pareto curve (blue circles) of the bi-criteria problem considering Vethanol and K1

(Hexose transporters). The other points represent projections of the same variables obtained during
other bi-criteria optimization problems: Vethanol-K2 (red squares), Vethanol-K3 (magenta triangles),
Vethanol-K4 (black stars), Vethanol-K5 (blue diamonds), Vethanol-K6 (red plus signs), Vethanol-K7

(magenta cross signs) and Vethanol-K8 (black asterisks). Fold-Change factors correspond to: K1: Hexose
transporters, K2: Glucokinase/Hexokinase, K3: Phosphofructokinase, K4: Trehalose 6-phosphate
syntase complex (+Glycogen production), K5: Glyceraldehyde-3-phosphate dehydrogenase, K6: GOL
(Glycerol production), K7: Pyruvate kynase, K8: ATPase.
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Figure 3. Box plot for the normalized Pareto set. In the bottom axis the fourteen objectives are
represented. Objectives 1-8 correspond to K1-K8 (see legend in Figure 2), objective 9 is indeed Vethanol

whereas the remaining 5 objectives represent X1-X5. X1: Internal glucose, X2: Glucose-6-phosphate,
X3: Fructose-1,6-diphosphate, X4: Phosphoenolpyruvate, X5: Adenosine triphosphate.
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Figure 4. Lower and upper bounds for objectives among the values attained by the set of
Pareto solutions of order Q. In particular, 611 solutions are efficient of order 14 (i.e., these are
indeed the solutions obtained after applying the Smart filter); 214 solutions are efficient of order 13; and
14 solutions are efficient of order 12. Objectives are ordered as in Figure 3. See legends in Figure 2 and
3.
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Figure 5. Proposed algorithm for the multiobjective global optimization of metabolic
networks. This method allows not only to generate a Pareto set, but also to systematically select the
most promising subset of enzymatic profiles embedded therein.
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Figure 6. Illustration of the smart Pareto filter. a) Indistinguishability region. b) Algorithm
performance example.
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Figure 7. Illustrative example for the Pareto order of efficiency concept. Blue solution is
efficient of order 5, whereas red solution is efficient of order 4 and green solution is efficient of order 3.
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Tables

Table 1. 14 solutions efficient of order 12 in decreasing order of Vethanol.

K1 K2 K3 K4 K5 K6 K7 K8 Vethanol X1 X2 X3 X4 X5

0.00 0.00 0.86 1.61 1.16 0.00 1.16 1.61 43.27 0.06 0.26 3.27 <0.01 0.34
0.00 0.00 1.26 1.61 0.00 0.00 0.75 0.56 42.88 0.05 0.26 16.93 <0.01 0.94
0.00 0.00 1.14 1.61 1.52 0.00 0.15 0.82 41.95 0.05 0.26 1.49 0.01 0.70
0.00 0.00 0.97 1.61 0.00 1.31 0.39 1.07 38.36 0.05 0.26 16.59 0.01 0.44
0.00 0.00 0.84 0.00 1.61 0.00 1.59 0.00 37.68 0.04 0.47 0.91 <0.01 1.48
0.00 0.00 0.59 1.61 0.00 0.00 0.81 0.20 35.83 0.04 0.55 12.15 <0.01 1.14
0.00 1.61 0.56 1.61 0.00 1.57 0.25 1.58 34.97 0.01 0.29 16.53 0.01 0.22
0.00 1.00 1.17 1.61 1.61 1.61 0.05 0.28 34.43 0.01 0.26 0.91 0.01 0.74
0.00 1.18 0.00 0.00 1.48 0.00 0.00 1.22 33.53 0.01 0.64 1.25 0.01 0.37
0.00 0.00 0.00 0.00 0.00 1.30 0.53 1.35 32.20 0.04 0.58 13.66 <0.01 0.29
0.00 0.00 0.00 0.00 0.00 1.29 0.55 1.30 32.17 0.04 0.59 13.50 <0.01 0.31
0.00 0.00 0.57 0.00 1.61 1.61 0.00 0.86 31.46 0.05 0.36 0.91 0.01 0.37
0.00 1.61 0.45 1.61 0.00 1.29 0.16 0.02 30.54 <0.01 0.60 9.69 0.01 0.98
0.00 0.00 0.44 1.61 0.00 1.61 0.44 0.00 30.24 0.04 0.61 9.54 <0.01 0.98

Recall that columns labeled as Kr represent indeed |ln(Kr)|. Enzyme 1: Hexose transporters, enzyme
2: Glucokinase/Hexokinase, enzyme 3: Phosphofructokinase, enzyme 4: Trehalose 6-phosphate syntase
complex (+Glycogen production), enzyme 5: Glyceraldehyde-3-phosphate dehydrogenase, enzyme 6:
GOL (Glycerol production),enzyme 7: Pyruvate kynase, enzyme 8: ATPase, metabolite 1: Internal
glucose, metabolite 2: Glucose-6-phosphate, metabolite 3: Fructose-1,6-diphosphate, metabolite 4:
Phosphoenolpyruvate, metabolite 5: Adenosine triphosphate.
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decision-makers. The capabilities of the proposed approach are illustrated through its application to the

design of environmentally conscious chemical supply chains (SCs).
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1. Introduction

In the recent past, multi-objective optimization (MOO) has
gained wider interest in environmental applications. This techni-
que treats the environmental concerns as individual objectives
rather than as constraints imposed on the system. This allows
identifying alternatives that achieve significant environmental
savings at a marginal increase in cost.

The definition of a suitable environmental metric to support
objective environmental assessments is an open issue in the
literature. The scientific community has not yet reached an
agreement on the use of a universal environmental metric, which
has motivated the development of a plethora of environmental
assessment methodologies. For instance, Il Lim et al. (1999)
proposed a global pollution index function for the design of
chemical processes. Dantus and High (2000) proposed to quantify
the environmental impact using hazardous values of different
compounds generated in a process. Alternatively, Zhou et al.
(2000) suggested to minimize the resources consumption and
waste generation in supply chain management applications.
ll rights reserved.

´n-Gosálbez).
Among the environmental indicators that are available, those
based on Life Cycle Assessment (LCA) principles (Guinée et al., 1992)
are nowadays becoming the prevalent approach. The combined use
of LCA and MOO was first proposed by Stefanis et al. (1995),
whereas the theoretical foundations of the framework were in fact
established by Azapagic and Clift (1999). Since then, several authors
have applied this general approach to engineering problems of
different nature and scale. For instance, the design and planning of
chemical supply chains was addressed in the works by Hugo and
Pistikopoulos (2003), Mele et al. (2005), Puigjaner and Guillén-
Gosálbez (2008), Guillén-Gosálbez and Grossmann (2009, 2010) and
Bojarski et al. (2009). At the single-site level, Stefanis et al. (1995);
Chakraborty and Linninger (2002) and Guillén-Gosálbez et al. (2008)
incorporated LCA principles in the design of chemical plants,
whereas Stefanis et al. (1997) and Cavin et al. (2004) addressed
the minimization of the LCA impact of batch facilities. Chang and
Hwang (1996) and Papandreou and Shang (2008) introduced some
models for the optimal design of utility systems that incorporated
LCA-based metrics. Hugo et al. (2005) and Guillén-Gosálbez et al.
(2010) addressed the strategic planning of hydrogen supply chains,
whereas Pistikopoulos and Stefanis (1998) applied LCA principles in
the selection of solvents in mass separating agent driven technolo-
gies. More recently, Gebreslassie et al. (2009, 2010) introduced MOO
models that incorporated LCA metrics for the design of absorption
cooling cycles.

www.elsevier.com/locate/ces
www.elsevier.com/locate/ces
dx.doi.org/10.1016/j.ces.2011.10.018
mailto:gonzalo.guillen@urv.cat
dx.doi.org/10.1016/j.ces.2011.10.018
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The computational burden of the standard MOO solution
methods that are employed in these approaches tends to grow
rapidly with the number of objectives (Deb and Saxena, 2005).
Further, the visualization and interpretation of the solution space
of these problems become harder as one increases the number of
objectives, which hampers the decision-making process. These
limitations are critical in environmental applications, and particu-
larly in those based on the combined use of MOO and LCA, in
which the simultaneous analysis of a wide range of environmental
metrics is sought. Previous attempts to ameliorate this difficulty
focused on aggregation schemes based on the use of indicators
calculated by attaching weights to the single environmental
metrics considered in the analysis (see Guillén-Gosálbez, 2011).

This approach has two major drawbacks. First, the weights
used, which are typically defined by a panel of experts, may not
represent the decision-makers’ interests. Second, aggregation
methods modify the Pareto structure of the problem, in a manner
such that some parts of the search space might be left out of the
analysis. An alternative approach that surmounts these difficul-
ties is to use dimensionality reduction methods that allow
omitting redundant metrics from the problem in order to keep
it in a manageable size. In this paper, we investigate the use of
Principal Component Analysis (PCA) to reduce the dimensionality
of multi-objective optimization problems arising in environmen-
tal applications. Our final goal is to reduce the problem complex-
ity while still preserving its Pareto structure to the extent
possible. An additional objective of our study is to gain valuable
insights on the Pareto structure of a given problem in order to
facilitate the decision-making process. The capabilities of the
combined use of PCA and MOO are highlighted in the discussion
of two case studies that address the design of environmentally
conscious chemical SCs.
2. Materials and methods

The next sections review some general concepts about PCA
and dimensionality reduction in MOO with emphasis on their
application in environmental engineering. In what follows, we
will consider MOO problems of the following form:

MOðx,yÞ ¼min ðf 1ðx,yÞ, . . . ,f mðx,yÞÞ

s:t: hðx,yÞ ¼ 0

gðx,yÞr0

xAR, yAf0;1g ð1Þ

where m objective functions are to be minimized (one economic
metric and m�1 environmental indicators). In supply chain
management (SCM) problems, like the ones addressed in this
paper, variables x denote mass flow rates, capacities of SC
entities and economic and environmental performance indicators,
whereas binary variables y are used to model the execution of
capacity expansions and establishment of transportation links.
Likewise, equality constraints represent mass balances and eco-
nomic and environmental calculations, whereas inequality con-
straints express capacity limitations (see the Appendix for further
details).

Problem MO can be solved by any MOO solution method (see
Ehrgott, 1998). As discussed by Deb and Saxena (2005), the
complexity of these techniques grows rapidly with the number
of objectives. Handling a large number of objectives (i.e., more
than three) in MOO causes additional difficulties related to the
visualization and analysis of the Pareto set (Deb and Saxena,
2005).
In this paper, we explore the use of PCA (Johnson and Wichner,
1998) to ameliorate these limitations. As will be shown later
in the article, PCA can be effectively employed to reduce the
dimension of MOO problems arising in environmental engineer-
ing, providing valuable insights on their structure.

2.1. Dimensionality reduction

Consider the set of objectives F :¼ ðf 1ðx,yÞ, . . . ,f mðx,yÞÞ in model
MO. The goal of dimensionality reduction methods is to determine
a subset F0 of F (F0DF) such that the Pareto structure of the model
is preserved to the extent possible when the problem is solved in
this reduced domain. Zitzler et al. (2003) were the first to introduce
a general notion of conflict between objective sets as a theoretical
foundation for objective reduction. They also introduced the
concept of delta error to quantify the change in the dominance
structure resulting from removing objectives originally contained
in F. An exact and an approximated algorithm were proposed
by these authors for minimizing such an error. More recently,
Guillén-Gosálbez (2011) developed an MILP-based method for
dimensionality reduction that was applied to two environmental
engineering problems. This approach employs branch and cut
techniques to identify those environmental objectives that mini-
mize the delta error of the approximation obtained after omitting
them. Despite being rigorous, all of these algorithms based on the
delta error concept have the limitation of being very sensitive to
the number of solutions and objectives (i.e., their computation
burden grows rapidly with the number of solutions and objectives).

In this paper, we will focus on a special type of methods for
dimensionality reduction based on PCA. This technique presents
the advantage of being faster than those based on the delta error.
We next review some generalities on PCA before describing its
use in the context of our problem.

2.2. Principal Component Analysis

Principal Component Analysis (PCA) is a multivariate techni-
que that allows to transform a series of correlated variables c1,
c2,y,cm into a set of uncorrelated variables u1, u2,y, um known as
principal components (PCs). PCs consist of convex combinations
of the original variables. As a result, each of their components
(sometimes referred to as loadings) represents the contribution
of an original variable towards that PC. The PCs of a data set x

are obtained by solving an eigenvalue–eigenvector problem. The
eigenvectors of the covariance matrix S of x correspond to the PCs
themselves. The correlation matrix R is preferred instead of S
when the variables are expressed in different units. In this case

RP¼ LP ð2Þ

where P is a matrix containing the PCs arranged in descending
order of their magnitudes (i.e., the jth column of P corresponds to
the PC with the jth largest eigenvalue lj) and L is a diagonal
matrix storing the associated eigenvalues, also listed in the same
way. These eigenvalues, which are obtained from a positive semi-
definite matrix and are therefore always positive or null (Abdi and
Williams, 2010), provide the amount of variance explained by the
associated PC. Further, because of the symmetry of matrix R, PCs
are pairwise orthogonal when their eigenvalues are different (for
proofs see Strang, 2009). Henceforth, the first PC explains the
largest portion of the problem’s variance, followed by the second
PC, and so on. All the PCs are constrained to be orthogonal
between them. Hence, the percentage of total variance explained
by the first k PCs is defined as follows:

CVARkð%Þ ¼ 100

Pk
j ¼ 1 ljPm
j ¼ 1 lj

ð3Þ

In practice, most of the problem’s variance is explained by only a
few PCs. The percentage of variance explained by the PCs can be
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used as a criterion to select a subset of PCs for further analysis
(Jolliffe, 2002).

In the context of environmental engineering, PCA can be used
to analyze relationships between environmental criteria.
Gutiérrez et al. (2010) explored the combined use of LCA and
PCA to uncover and visualize the structure of large multidimen-
sional data sets in the context of waste water treatment plants.
After applying PCA, they observed strong correlations between
some LCA metrics. They applied the same approach to mussel
cultivation and waste electrical and electronic equipment
(Gutiérrez et al., 2010).

PCA can be effectively employed for selecting a few variables
among a wider set of correlated variables. In the context of MOO,
this property is certainly useful as it allows identifying redundant
objectives that can be removed from the model, thereby alleviat-
ing its complexity.

To the best of our knowledge, Deb and Saxena (2005) were the
first to use PCA in MOO. They proposed some heuristic rules based
on PCA that allow identifying redundant objectives from a set of
feasible points of the MOO. These rules are based on the analysis
of the components of the eigenvectors of the correlation matrix.
The authors coupled this technique with evolutionary algorithms
(i.e., elitist non-dominated sorting genetic algorithm, NSGA-II) in
order to improve their performance.

In contrast to the work of Deb and Saxena (2005), we propose
herein to integrate PCA with a rigorous MOO solution method
(i.e., epsilon constraint coupled with branch and cut) that guar-
antees the global optimality of the solutions found. As will be
discussed later in the paper, this approach has the advantage
of providing solutions that are globally optimal within a desired
tolerance in shorter CPU times, as opposed to the approach by
Deb and Saxena (2005) that is unable to guarantee the optimality
of the solutions found. An additional novelty of this work is that,
to the best of our knowledge, it is the first contribution that
makes use of PCA for reducing the number of objectives in an
environmental engineering MOO problem.

2.3. Combined used of PCA and MOO

We next present a PCA based epsilon constraint procedure to
solve MOO problems arising in environmental engineering. The
method is applied in an iterative manner as follows. First, some
Pareto solutions of the problem with all the original objectives are
generated using the epsilon constraint method. PCA is then
applied to these high-dimensional points in order to identify
redundant environmental metrics that can be omitted. After
removing redundant environmental objectives, the epsilon con-
strain method is applied again to the reduced space model,
generating new solutions that will be analyzed using PCA. The
algorithm proceeds in this manner until no further reductions in
the dimension of the MOO problem are possible. The detailed
steps of the algorithm are as follows:
1.
 Initialization.
(a) Set a threshold cut TC above which no more PCs will be

considered, and a number of iterations it for the epsilon
constraint method.

(b) Optimize each individual objective f iAF separately. Store
the best and worst values (f i and f i , respectively) of each
objective function obtained in these optimizations.
2.
 Apply the epsilon constraint method to model MO.
(a) Choose an objective fi as main objective and transfer the

remaining ones (i.e., f i0a f i) to auxiliary constraints, giving
rise to problem MOEC:

MOECðx,yÞ ¼min f iðx,yÞ
s:t: f i0 ðx,yÞren
i0 8f i0AF\f i n¼ 1, . . . ,N

hðx,yÞ ¼ 0

gðx,yÞr0

xAR, yAf0;1g ð4Þ

(b) Calculate the epsilon parameters (en
i0
) for each objective

f i0a f i by splitting the interval [f i0 , f i0 ] into N�1 sub-
intervals.

(c) Solve MOEC for each set of epsilon parameters (a total of
N9F9�1 problems must be solved).

(d) Generate matrix M (with dimension N9F9�1
� 9F9) by stor-

ing in each row the values of the 9F9 objectives associated
with each solution n of problem MOEC.
3.
 Compute the PCs of matrix M.
(a) Filter matrix M by eliminating repeated, dominated or

infeasible solutions.
(b) Standardize the filtered matrix M so as to make its

centroid equal to 0. For this, we subtract the mean of each
column mi from each data point in the matrix.

(c) If the magnitudes of the 9F9 objectives are different, divide
each data point in the matrix by the standard deviation of
the corresponding column si and compute the correlation
matrix R of the standardized matrix M. Otherwise, com-
pute the covariance matrix S of M.

(d) Determine the eigenvectors and eigenvalues of R (or S).
Order them in decreasing order of their eigenvalues and
assign PCs recursively. That is, let the first eigenvector be
the first PC; the second eigenvector be the second PC and
so on so forth. Let the variance explained by each PC be
equal to the associated eigenvalue (VARj ¼ lj).
4.
 Apply the objective reduction heuristic proposed by Deb and
Saxena (2005).
(a) Define an alternative set of objectives F0 ¼ |.
(b) Calculate the portion of the total variance explained by the

first k PCs (CVARk) for k¼ 1, . . . ,9F9. Retain for further
analysis the minimal subset of PCs with a total cumulative
variance above TC. Fathom the rest of PCs.

(c) Add to F0 the objectives with the most positive and most
negative contribution to the eigenvector of the first PC.

(d) For the remaining PCs, proceed as follows. If ljr0:1, add
to F0 the objective with the highest contribution in
absolute value. If lj40:1:

i. If all the components of the PC are positive, add to F0

the objective corresponding to the highest component
of the eigenvector.

ii. If all the components of the PC are negative, add all the
objectives to F0.

iii. If none of the previous two cases apply, proceed as
follows. Let mpj be the most positive component of the
PC under consideration and mnj its most negative one.
A. If mpjo0:99mnj9, add the objective corresponding

to mnj to F0.
B. If 0:99mnj9rmpjo9mnj9, add to F0 the objectives

associated with both mnj and mpj.
C. If 0:89mpj9rmnjo9mpj9, add to F0 the objectives

associated with both mnj and mpj.
D. If none of the previous three cases apply, add to F0

the objective associated with mpj.

5.
 If F0aF, make F ¼ F0 and go to step 2. Otherwise stop.

2.3.1. Remarks
�
 In step 1.a, it is recommended to use a large value of TC

(refer to Deb and Saxena (2005) for further discussion on this
issue).
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�
 Steps 1.a and 1.b depend on the PCA metrics used to identify
redundant objectives and the solution procedure employed to
solve MO, respectively. Hence, the initialization step may vary
according to the methods of choice.

�
 In step 2, we can use any MOO solution procedure coupled

with PCA. Even when the epsilon constraint method is
employed, the original set of Pareto solutions used in the
PCA analysis can be generated in different ways. One possible
manner is to run the epsilon constraint method in the original
search space, as mentioned above. An alternative approach is
to execute the epsilon constraint method for an arbitrary
reduced set of objectives.

�
 Although the number of iterations of the epsilon constraint

method can be modified at will during the algorithm, it is
recommended to increase the value of N (step 2.b) in succes-
sive iterations in which the number of objectives diminishes.
This will increase the granularity of the data for a similar
computational burden (see numerical examples for further
clarification on this issue).

�
 The solutions generated in the reduced spaces obtained during

the execution of the algorithm are all guaranteed to be weakly
Pareto optimal in the original search space.

�
 Recall that the final step of the original heuristic by Deb and

Saxena (2005), which is described in Section 5.2.3 of the
referenced work, is not included in the framework proposed
herein. Note also that, in the proposed strategy, there is no
need to proceed with the objective reduction procedure once
9F9¼ 2, since the first step of the heuristic will lead to retaining
the two objectives which are already in the set.

�
 In step 4, different criteria based on the outcome of the PCA

can be employed for identifying redundant objectives, as
discussed by Gutiérrez et al. (2010).
Fig. 1. Generic 3-echelon supply chain topology. Taken from Guillén-Gosálbez and

Grossmann (2009).
3. Results and discussion

The design of chemical SCs is taken as a test-bed to illustrate
the capabilities of the use of PCA in the multi-objective optimiza-
tion of industrial processes. Note that the interest here is on the
identification of redundancies between LCA metrics, and not on
the analysis of the main features of the SC configurations obtained
from the multi-objective optimization. For further details on the
latter topic, the reader is referred to the original works by Guillén-
Gosálbez and Grossmann (2009, 2010).

The environmentally conscious design of chemical SCs has been
the focus of an increasing interest in the last years. In a seminar
paper, Mele et al. (2005) addressed the optimization of SCs with
economic and LCA-based environmental concerns through a com-
bined simulation-optimization approach. Hugo and Pistikopoulos
(2005) proposed a MILP formulation for the long-range planning
and design of SCs, in which the environmental performance was
measured via the Eco-indicator 99 (Eco99). Bojarski et al. (2009)
introduced a MILP formulation for the design and planning of SCs
considering economical and environmental issues, which incorpo-
rated the CML 2001 methodology to assess their environmental
performance. Guillén-Gosálbez and Grossmann (2009) (see also
Grossmann and Guillén-Gosálbez, 2010) proposed two MINLP for-
mulations for the design of chemical SCs under uncertainty that
explicitly consider the variability of the life cycle inventory of
emissions and damage assessment model, respectively.

The problem of interest can be formally stated as follows. We
are given a demand of chemicals to be satisfied in a set of final
markets, a set of available manufacturing technologies and potential
locations for plants and warehouses, and cost and environmental
data associated with the SC operation. The goal is to determine the
set of Pareto optimal SC configurations that maximize the net
present value (NPV) and minimize a set of environmental metrics.
A detailed mathematical formulation for the problem described
above can be found in the works by Guillén-Gosálbez and
Grossmann (2009, 2010). For the sake of simplicity, we have omitted
the treatment of the uncertainties associated with the life cycle
inventory of emissions and damage assessment model. We therefore
assume herein that all model parameters can be perfectly known in
advance and do not show any variability. The constraints of the
model can be roughly classified into three main blocks: mass
balances, capacity limitations and objective function equations.
Due to space limitations, we provide the complete formulation in
the Appendix (the reader is referred to the works by Guillén-
Gosálbez and Grossmann (2009) for further details).

3.1. Numerical examples

Two case studies are presented to illustrate the usefulness of the
proposed approach. These examples were first introduced by
Guillén-Gosálbez and Grossmann (2009). We consider a super-
structure based on a three-echelon SC (production-storage-market)
with different available production technologies for plants, potential
locations for SC entities and transportation links (see Fig. 1). The goal
of the analysis is to determine the SC configuration along with the
associated planning decisions that maximize the NPV and minimize
the associated environmental impact.

In the original work by Guillén-Gosálbez and Grossmann (2009),
the environmental performance was assessed through the Eco99. In
contrast, the mathematical formulation considered in this work seeks
to minimize simultaneously the three damage categories included in
the Eco99: ecosystem quality (EQ), human health (HH), and damage
to natural resources (NR), which gives rise to a 4-objective optimiza-
tion problem. The environmental data have been updated with the
latest version of the Eco-invent database (see Tables 1 and 5). On the
other hand, the process data (cost, demand, yields, etc.) are those
reported in Guillén-Gosálbez and Grossmann (2009).

The epsilon-constraint method was coded in GAMS 23.0.2
using CPLEX 11.2.1 as MILP solver. The objective reduction
technique was implemented in MATLAB R2009a. A threshold
cut TC ¼ 95% was used in all the cases. The numerical experi-
ments were performed on an Intel 1.2 GHz machine.

3.1.1. Case study 1

The first case study considers an existing SC (see Fig. 8 in
Guillén-Gosálbez and Grossmann, 2009) comprising one plant,
with a capacity of 100 kt/year, and one warehouse, with a
capacity of 100 kt and an initial inventory of 0 kt. Both of them,
the plant and the warehouse, are located in Tarragona (Spain).
The demand of four different markets (Leuna in Germany,
Neratovice in Czech Republic, Sines in Portugal and Tarragona in



Table 1
Life cycle impact assessment data (i.e., product of the life cycle inventory of emissions with the corresponding damage factors) used in the

calculations of case study 1. All the damages are expressed in ecopoints per unit of reference flow.

Item Reference units EQ HH NR

Heat, heavy fuel oil, at 1 MW furnace kg 0.0264598 0.1069444 0.1805763

Ammonia kg 0.022189 0.085481 0.14725

Benzene kg 0.0058944 0.026526 0.2073

Ethylene kg 0.0012775 0.019804 0.20742

Hydrochloric acid kg 0.0075906 0.0464 0.030403

Hydrogen cyanide kg 0.0047149 0.083475 0.34225

Oxygen kg 0.0013857 0.011564 0.0066515

Propylene kg 0.0012435 0.02012 0.2117

Sodium hydroxide kg 0.0056171 0.036556 0.020385

Sulfuric acid kg 0.0029373 0.030643 0.0051743

Transport, lorry 20–28 t, fleet average t km 0.0013865 0.0070944 0.0094519

Table 2
Solutions obtained for case study 1 after filtering the original 216 points generated

by applying the epsilon constraint method to the 4-dimensional problem.

Solution NPV ($) EQ HH NR

1 103,772 22,530,227 104,242,733 359,642,956

2 113,850 22,889,709 106,029,789 365,276,235

3 114,954 22,928,460 106,233,138 369,279,030

4 114,980 22,930,280 106,242,154 369,309,474

5 117,401 23,180,056 107,474,994 370,909,514

6 119,897 23,330,333 108,220,586 376,260,912

7 119,903 23,332,064 108,223,542 376,391,893

8 120,158 23,450,603 108,787,926 376,542,793

9 122,652 23,730,386 110,109,661 382,176,072

10 122,681 23,730,386 110,103,519 382,300,057

11 122,679 23,749,505 110,213,947 382,176,072

12 122,781 23,752,498 110,213,947 382,505,703

13 122,682 23,752,871 110,232,303 382,176,072

14 123,716 24,130,438 112,147,778 385,082,154

15 123,739 24,141,495 112,204,351 385,157,527

16 124,284 24,530,491 114,194,755 387,809,352

Table 3

Correlation matrix R11 of matrix M11.

NPV EQ HH NR

NPV 1.0000 �0.8928 �0.8903 �0.9568

EQ �0.8928 1.0000 0.9999 0.9674

HH �0.8903 0.9999 1.0000 0.9649

NR �0.9568 0.9674 0.9649 1.0000

Table 4
PCs (presented in decreasing order of their eigenvalues) and other relevant data

computed from the correlation matrix of the results obtained by solving the

4-dimensional multi-objective optimization in case study 1. Columns NPV, EQ, HH

and NR show the contribution of the corresponding objective to each PC, whereas

the amount of variance explained (i.e., the associated eigenvalue) is given in

column VARj. Column %Exp. denotes the same quantity but expressed as a

percentage of the total variance of the problem, whereas CVARk accounts for the

accumulated percentage of variance explained by the first k PCs.

PC NPV EQ HH NR VARj %Exp. CVARk (%)

1 �0.4871 0.5033 0.5026 0.5068 3.8369 95.9236 95.9236

2 �0.7700 �0.4331 �0.4486 0.1350 0.1468 3.6704 99.5940

3 �0.4120 0.1941 0.2638 �0.8503 0.0162 0.4045 99.9985

4 �0.0116 0.7221 �0.6903 �0.0437 0.0001 0.0015 100.0000
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Spain) must be satisfied, at least up to a minimum level of 85%, in
every period in which the total time horizon of 3 years is divided.
For this purpose, we consider six different technologies (see
Fig. 9 in Guillén-Gosálbez and Grossmann, 2009). Table 1 displays
the main environmental data, whereas the remaining process and
cost data can be found in Tables 2–7 of the original work by
Guillén-Gosálbez and Grossmann (2009). A detailed formulation
of the model (which will be referred to as P11 from here on) can
also be found either in the aforementioned reference or in the
Appendix.

Following our solution procedure, we first generated a set of
Pareto solutions of P11 in the original search space. For this, we
optimized each single scalar objective separately (i.e., initializa-
tion step). This provided the lower and upper limits for each
epsilon parameter. The epsilon intervals were then split into six
subintervals, which led to 216 (i.e., 63) single iterations. The 216
solutions were next filtered in order to remove infeasible and
suboptimal solutions. We finally identified 16 non-dominated
points, which were used in the PCA. These solutions were stored
in matrix M11, which is presented in Table 2.

We next calculated the correlation matrix (see Table 3) in
order to reveal whether the objectives were correlated. This
additional step, not included as such in our algorithm, provides
valuable information on the underlying relationships between the
LCA metrics prior to the application of PCA.

As seen, the economic objective (NPV) is conflicting with the
three environmental metrics (EQ, HH and NR). This was expected,
given the traditional trade-off existing between economic and
environmental criteria in many engineering applications. This
observation suggests in turn that the three impact categories
are somehow equivalent in this problem. The correlation between
the environmental metrics is particularly strong. Henceforth, it
was expected that the application of PCA would allow for
significant reductions in the number of objectives.

Matrix M11 was next standardized. This was done by sub-
tracting from each measurement (i.e., Pareto point) the mean
value of the corresponding column, m11

j (8j), so that the centroid
of the data set became 0, and by dividing each value by the
corresponding standard deviation, s11

j (8j).
At this point, the principal components were computed, together

with the associated eigenvalues, by solving an eigenvalue-eigenvector
problem. For this, we used the correlation matrix R11 (see step 3 of
the algorithm), since the magnitudes of the four objectives were not
the same. Note that the correlation matrix R11 used to obtain the
PCs is not the same as the correlation matrix shown in Table 3,
which was obtained before the standardization of matrix M11.
The results of the PCA are summarized in Table 4. Recall that the
components of a PC denote the contribution of each individual
objective toward that PC. A positive value indicates that the
objective is increased as we move along the PC axes, whereas a
negative value indicates the opposite.

Fig. 2 depicts the objectives (vectors) and Pareto points (dots)
in the space of the two first PCs, which explain 95.9 and 3.7% of
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Fig. 2. The figure depicts the objectives (vectors) and Pareto points (dots) in the

space of the two first PCs for case study 1.
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of case study 1 in the subspace of objectives NPV and EQ. Plus signs correspond

to the results obtained with four objectives in the pool whereas dots represent

solutions obtained with two objectives in the pool.
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obtained with two objectives in the pool.
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the total variance, respectively. Note that the projections of the
vectors representing the environmental impact categories onto
the PC1 axis are all positive, whereas that of the profit is negative.
This is due to the existence of a clear trade-off between the
economic and environmental performance of the network. In
addition, the vectors associated with HH and EQ point towards
the same direction, which indicates a very strong correlation
between both metrics.

We next applied the heuristic proposed by Deb and Saxena
(2005) to the PCA results. By selecting the most positive (NR) and
most negative (NPV) objectives of the first PC, we obtained the
two most conflicting objectives (those kept in the problem
formulation). No further PCs were analyzed, since the variance
explained by this first PC was above the TC.

Observing Fig. 2, one could wrongly conclude that the data set
is indeed 3-dimensional, as vectors representing the objectives
point towards three different directions. It should be noted,
however, that these three clusters appear only when the second
PC, which explains 3.67% of the total variance and can thus be
neglected, is considered in the analysis. In contrast, when the
vectors are projected onto the PC1 axes, the 2-dimensionality of
the problem is uncovered, as the three objectives, EQ, HH and NR,
practically fall in the same spot.

We next removed the two redundant objectives (i.e., EQ and
HH) from the pool, and generated a new set of Pareto solutions,
this time considering only NPV and NR. We will refer to this
problem as P12. Again, 216 iterations were run, but this time we
concentrated on optimizing only the aforementioned two objec-
tives. One single epsilon interval was therefore defined for NR,
which was split into 216 subintervals giving rise again to 216
iterations.

The results obtained after applying the epsilon constraint
method in this new reduced space are presented in Figs. 3–5.
More precisely, these figures show the projections of the Pareto
points onto 2-dimensional spaces. In dots, we have represented
the solutions obtained when optimizing two objectives, whereas
plus signs denote those determined when four objectives are
considered. Note that the computational effort associated with
the generation of both sets of solutions is indeed very similar, as
we have run the same number of iterations (i.e., 216) in both
cases. Hence, it is clear that for a very similar CPU time, the
reduced model provides more Pareto points.

We should clarify that the computational savings of reducing
objectives may vary from one solution method to another. Never-
theless, as pointed out by Deb and Saxena (2005), all of the MOO
methods available tend to be very sensitive indeed to the number
of objectives.

As can be seen in the figures, most of the information of the
original 4-dimensional problem is still retained when two objec-
tives are considered. That is, almost all the points generated when
four objectives are optimized are identified after removing two
of them from the optimization. Furthermore, the granularity of
the data is dramatically improved after omitting the redundant
objectives.

Let us clarify that all the points depicted in the figures are
indeed Pareto optimal in the original 4-dimensional search space.
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Fig. 5. Projections of the points obtained from the multi-objective optimization of case study 1 in the space of objectives NPV and NR. Plus signs correspond to the results
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Table 5
Life cycle impact assessment data (i.e., product of the life cycle inventory of emissions with the corresponding damage factors) used

in the calculations of case study 2. All the damages are expressed in ecopoints/unit of reference flow.

Item Reference units EQ HH NR

Heat, heavy fuel oil, at 1 MW furnace kg 0.0264598 0.1069444 0.1805763

Ammonia kg 0.022189 0.085481 0.14725

Benzene kg 0.0058944 0.026526 0.2073

Carbon monoxide kg 0.0085804 0.050513 0.13189

Chlorine kg 0.005501 0.035715 0.019729

Ethylene kg 0.0012775 0.019804 0.20742

Hydrogen chloride kg 0.0075906 0.0464 0.030403

Hydrogen cyanide kg 0.0047149 0.083475 0.34225

Methane kg 0.0496408 0.031777 0.017093

Methanol kg 0.02341 0.014411 0.0099561

Methyl acetate kg 0.0047723 0.025554 0.13676

Nitrogen kg 0.0014686 0.012256 0.0070495

Oleum kg 0.0029373 0.030643 0.0051743

Oxygen kg 0.0013857 0.011564 0.0066515

Propylene kg 0.0012435 0.02012 0.2117

Sodium hydroxide kg 0.0056171 0.036556 0.020385

Sulfuric acid kg 0.0029373 0.030643 0.0051743

Transport, lorry 20–28 t, fleet average t km 0.0013865 0.007094 0.0094519
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This is because, as pointed out by Brockhoff and Zitzler (2009),
any Pareto solution of a MOO problem defined for any subset
F0 � F, is also Pareto optimal in the higher dimensional space F.

Recall that solutions depicted as dots in Fig. 5 belong to the
Pareto optimal frontier of the 2-dimensional problem. The
remaining points are projections of the Pareto solutions generated
in a higher dimensional space onto the corresponding axes. For
instance, plus sign points in Figs. 3–5 correspond to projections of
the 4-dimensional Pareto set, as commented above. Similarly, dot
points in Figs. 3 and 4 are projections of the Pareto frontier
depicted in Fig. 5 onto the same axis. As observed in Fig. 5, some
points of the original search space cannot be identified after
reducing the dimensionality of the problem. This is because these
points are suboptimal when NPV and NR are the only objectives
considered in the analysis.

The application of the PCA algorithm presented in this paper
allows omitting two objectives. Henceforth, no further objective
reduction is possible and no more iterations are required in this
case (see Remark 6).
3.1.2. Case study 2

This second case study considers another SC to be set in
Europe (see Fig. 18 in Guillén-Gosálbez and Grossmann, 2009). In
this case, there are no existing facilities already under operation.
Twenty technologies manufacturing 14 different products, some
of which can be recycled and used as raw materials for other
processes, are available (refer to Fig. 19 in Guillén-Gosálbez and
Grossmann, 2009). No limits on the purchases of raw materials
and intermediates are considered, while no outsourcing is
allowed for final products. Four final markets are considered
(Kazincbarcika in Hungary, Wloclaweck in Poland, Neratovice and
Tarragona), in which a minimum demand satisfaction level of 97.5%
must be attained. The problem data can be found in Tables 9–15 of
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the work by Guillén-Gosálbez and Grossmann (2009). Refer also to
the original work by Guillén-Gosálbez and Grossmann (2009) and to
the Appendix for a detailed formulation of the model (P21 from
here on).

The same solution strategy was applied to this example. Each
scalar objective was first optimized separately in order to identify
the extreme limits for each single objective. The associated
intervals were then split into six subintervals, resulting in 216
iterations of the epsilon-constraint method. Only 11 non-domi-
nated solutions were identified after filtering the set of 216
points. These points were stored in matrix M21, which is shown
in Table 6.

We next constructed the correlation matrix (see Table 7) of
matrix M21 in order to identify redundancies between objectives.
The analysis of this matrix reveals the existence of a conflict
between the economic (NPV) and environmental objectives (EQ,
HH and NR). Further, the correlation between the three environ-
mental objectives is very strong (i.e., equal to 1), which indicates
the existence of redundant metrics.

We next standardized matrix M21 in order to compute its
correlation matrix R21 and calculate the PCs (see Table 8). Note
Table 6
Solutions obtained for case study 2 after filtering the original 216 points generated

by applying the epsilon constraint method to the 4-dimensional problem.

Solution NPV ($) EQ HH NR

1 357,919 24,149,124 97,871,816 164,805,370

2 376,676 24,867,509 10,0888,811 169,707,241

3 380,078 25,620,368 103,921,340 174,845,248

4 380,161 25,636,325 103,994,502 174,954,090

5 380,161 25,636,400 103,994,804 174,954,599

6 382,139 26,370,472 106,946,101 179,964,426

7 382,163 26,379,926 106,984,314 180,028,948

8 382,163 26,379,965 106,984,471 180,029,213

9 384,481 27,118,769 109,970,863 185,071,226

10 384,486 27,121,328 109,981,274 185,088,692

11 386,750 27,867,127 112,995,625 190,178,443

Table 7

Correlation matrix R21 of matrix M21.

NPV EQ HH NR

NPV 1.0000 �0.8457 �0.8491 �0.8457

EQ �0.8457 1.0000 1.0000 1.0000

HH �0.8491 1.0000 1.0000 1.0000

R �0.8457 1.0000 1.0000 1.0000

Table 8
PCs (presented in decreasing order of their eigenvalues) and other relevant data

computed from the correlation matrix of the results obtained by solving the

4-dimensional multi-objective optimization in case study 2. Columns NPV, EQ, HH

and R show the contribution of the corresponding objective to each PC, whereas

the amount of variance explained (i.e., the associated eigenvalue) is given in

column VARj. Column %Exp. denotes the same quantity but expressed as a

percentage of the total variance of the problem, whereas CVARk accounts for the

accumulated percentage of variance explained by the first k PCs

PC NPV EQ HH NR VARj %Exp. CVARk (%)

1 �0.4673 0.5103 0.5107 0.5103 3.7752 94.3806 94.3806

2 �0.8841 �0.2742 �0.2608 �0.2743 0.2248 5.6193 99.9999

3 �0.0099 0.4029 �0.8192 0.4080 0.0000 0.0000 99.9999

4 0.0000 0.7086 �0.0029 �0.7056 0.0000 0.0000 99.9999
that this correlation matrix is not the same as the one presented
in Table 7, which provided preliminary information on the
relationships between objectives.

Following the proposed algorithm, the objectives with the
most positive and most negative contribution to the first PC (HH
and NPV, respectively) were selected and added to the reduced
set of objectives F0. In this case, the first PC, which explains
94.38% of the variance, is not enough to attain the proposed TC of
95%. Note however, that the problem’s variance explained by the
second PC is rather small compared to that explained by the first
PC. This indicates that the data set in M21 is essentially one-
dimensional regarding the PCs and bi-dimensional regarding the
objectives (see Fig. 6). Henceforth, no more PCs, and consequently
objectives, were considered. Objectives EQ and NR were then
removed from the pool by making F ¼ F0.

After omitting the redundant objectives, we generated a new set
of Pareto optimal solutions for problem P22 considering the reduced
objective set F ¼ fNPV ,HHg. Since the dimensionality of the problem
was reduced to 2 in the first iteration of the algorithm, it was
possible to concentrate all the iterations of the epsilon constraint
method on a single objective. Hence, the single epsilon parameter
was divided into the same number of subintervals as iterations were
performed with 4 objectives (i.e., 216). The results of these calcula-
tions were used to construct matrix M22. The new Pareto solutions
are depicted in Figs. 7–9 (dots), which also show the points obtained
from the minimization of four objectives (plus signs).

As seen in the figures, for a similar computational effort, it is
possible to generate more non-dominated solutions when only two
objectives are considered. Moreover, the Pareto set generated in
the reduced space contains most of the points calculated with the
original 4-dimensional formulation. Hence, it seems clear that the
proposed approach provides a better representation of the Pareto set
for the same CPU time. Note also that it would be possible to
generate the 11 solutions obtained in the high dimensional space by
running the epsilon constraint method in the reduced space with
only 11 iterations, which would lead to significant CPU savings. At
this point 9F9¼ 2, so there is no need to perform further reductions
in the number of objectives and the algorithm stops.
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Fig. 6. The figure depicts the objectives (vectors) and Pareto points (dots) in the

space of the two first PCs for case study 2.
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Fig. 9. Projections of the points obtained from the multi-objective optimization of

case study 2 in the space of objectives NPV and NR. Plus signs correspond to the

results obtained with four objectives in the pool whereas dots represent solutions

obtained with two objectives in the pool.
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case study 2 in the subspace of objectives NPV and EQ. Plus signs correspond to

the results obtained with four objectives in the pool whereas dots represent

solutions obtained with two objectives in the pool.
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4. Conclusions

This paper has investigated the use of PCA for dimensionality
reduction in environmental engineering problems. We have pre-
sented a novel method for solving MOO problems that integrates
PCA into the standard epsilon constraint method in order to
overcome the numerical difficulties that arise when dealing with
a large number of environmental objectives.

The capabilities of the proposed approach have been illu-
strated through its application to the design of chemical supply
chains. It has been clearly shown how PCA can be effectively
employed to identify redundant environmental metrics that can
be left out of the analysis while still preserving to a large extent
its Pareto structure. In addition, the use of PCA coupled with MOO
provides valuable insights on the relationships between the
environmental metrics considered in the analysis, facilitating
the task of decision-makers during the analysis and interpretation
of the Pareto set of an environmental problem.
Nomenclature
Abbreviations
LCA
 Life Cycle Assessment

MOO
 Multi-Objective Optimization

PC
 Principal Component

PCA
 Principal Component Analysis

SC
 Supply Chain

SCM
 Supply Chain Management
Set/indices
A
 set of plants indexed by a
B
 set of environmental burdens indexed by b
D
 set of damage categories indexed by d
F
 set of objectives indexed by i
G
 set of manufacturing technologies indexed by g
J
 set of principal components indexed by j
N
 set of epsilon constraint method subintervals indexed
by n
P
 set of products indexed by p
S
 set of markets indexed by s
T
 set of time periods indexed by t
W
 set of warehouses indexed by w
Subsets
F0
 subset of objectives F0 � F
IN(p)
 set of manufacturing technologies that consume p
MP(g)
 set of main products p of technology g
OUT(p)
 set of manufacturing technologies that produce p
Parameters
CEPL
gat
upper bound on the capacity expansion of
manufacturing technology g at plant a in time period t
CEPL
gat
lower bound on the capacity expansion of
manufacturing technology g at plant a in time period t
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CEWH
wt
upper bound on the capacity expansion of warehouse
w in time period t
CEWH
wt
lower bound on the capacity expansion of warehouse
w in time period t
DMK
spt
maximum demand of product p sold at market s in
period t
DMK
spt
minimum demand of product p to be satisfied at
market s in period t
ir
 interest rate
f i

upper bound on objective function fi
f i
 lower bound on objective function fi
FCI
 upper limit on the total capital investment
k
 number of PCs selected (krm) to calculate the
cumulative variance they explain
m
 number of original objectives i
N
 number of subintervals n in the epsilon constraint
method
NEXPga
PL
 maximum number of capacity expansions for

technology g available at plant a
NEXPw
WH
 maximum number of capacity expansions for

warehouse w
NT
 number of time periods
PUapt
 upper bound on the purchases of product p at plant a

in period t
PUapt
 lower bound on the purchases of product p at plant a

in period t
QPL
awt
upper bound on the flow of materials between plant
a and warehouse w in time period t
QPL
awt
lower bound on the flow of materials between plant a

and warehouse w in time period t
QWH
wst
upper bound on the flow of materials between
warehouse w and market s in time period t
QWH
wst
lower bound on the flow of materials between
warehouse w and market s in time period t
SV
 salvage value

TC
 threshold cut in the heuristic proposed by Deb and

Saxena (2005)

TORw
 turnover ratio of warehouse w
En
i
 epsilon constraint parameter for subinterval n of

objective i
xgp
 mass balance coefficient associated with product p

and manufacturing technology g
j
 tax rate
gFP
spt
price of final product p sold at market s in time period t
gRM
apt
price of raw material p purchased at plant a in time
period t
vgapt
 operating cost of manufacturing technology g

available at plant a per unit of main product p in time
period t
pwt
 inventory cost at warehouse w in period t
cPL
awpt
unit transportation cost of product p sent from plant
a to warehouse w in time period t
cWH
wspt
unit transportation cost of product p sent from
warehouse w to market s in time period t
aPL
gat
variable investment term associated with technology
g at plant a in time period t
aWH
wt
variable investment term associated with warehouse
w in time period t
bPL
gat
fixed investment term associated with technology g

at plant a in time period t
bWH
wt
fixed investment term associated with warehouse w

in time period t
bTPL
awt
fixed investment term associated with the
establishment of a transport link between plant a and
warehouse w in time period t
bTWH
wst
fixed investment term associated with the
establishment of a transport link between warehouse
w and market s in time period t
oPU
bp
emissions/feedstock requirements of chemical b per
unit of raw material p generated
oPR
bp
emissions/feedstock requirements of chemical b per
unit of intermediate/final product p generated
oEN
b

emissions/feedstock requirements of chemical b per
unit of energy consumed
oTR
b

emissions/feedstock requirements of chemical b per
unit of mass transported one unit of distance
ZEN
gap
energy consumed per unit of chemical p produced
with manufacturing technology g at plant a
dPL
aw
distance between plant a and warehouse w
dWH
ws
distance between warehouse w and market s
ybd
 damage factor of chemical b contributing to damage

category d
t
 minimum desired percentage of the available
installed capacity that must be utilized
Variables
Cgat
PL
 capacity of manufacturing technology g at plant a in

time period t
CEgat
PL
 capacity expansion of manufacturing technology g at

plant a in time period t
Cwt
WH
 capacity of warehouse w in time period t
CEwt
WH
 capacity expansion of warehouse w in time period t
CFt
 cash flow in period t
CVARk
 cumulative variance explained by the first k PCs
expressed as a percentage
DAMd
 impact in damage category d
DEPt
 depreciation term in period t
EQ
 damage to the ecosystem quality

fi
 objective function i
FCI
 fixed capital investment

FTDCt
 fraction of the total depreciable capital that must be

paid in period t
HH
 damage to human health

ILwt
 average inventory level at warehouse w in time period t
INVwpt
 inventory of product p kept at warehouse w in
period t
L
 diagonal m�m matrix storing the eigenvalues lj

arranged in descending order of their magnitudes

LCIb
 life cycle inventory entry (i.e., emissions/feedstock

requirements) associated with chemical b
M
 matrix storing solutions generated with the epsilon
constraint method
mpj
 most positive component of PCj
mnj
 most negative component of PCj
NEt
 net earnings in period t
NPV
 net present value

P
 m�m matrix storing the PC components arranged in

descending order of their eigenvalues lj
PUapt
 purchases of product p made by plant a in period t
Qawpt
PL
 flow of product p sent from plant a to warehouse w in

period t
Qwspt
WH
 flow of product p sent from warehouse w to market s

in period t
R
 correlation matrix

NR
 damage to natural resources

SAspt
 sales of product p at market s in time period t
VARj
 amount of variance explained by PCj
Wgapt
 input/output flow of product p associated with
technology g at plant a in t
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Xgat
PL
 binary variable (1 if the capacity of manufacturing

technology g at plant a is expanded in time period t,
0 otherwise)
Xwt
WH
 binary variable (1 if the capacity of warehouse w is

expanded in time period t, 0 otherwise)

Yawt

PL
 binary variable (1 if a transportation link between
plant a and warehouse w is established in time
period t, 0 otherwise)
Ywst
WH
 binary variable (1 if a transportation link between

warehouse w and market s is established in time
period t, 0 otherwise)
lj
 eigenvalue associated to PCj
mi
 mean value of objective i
si
 standard deviation of objective i
S
 covariance matrix
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Appendix A

A.1. Mathematical formulation

For the sake of completeness of this work, we next present an
outline of the mathematical formulation used in the case studies.
A more detailed model can be found in the work by Guillén-Gosálbez
and Grossmann (2009). Similar formulations are also available in the
works by Guillén et al. (2007) and Laı́nez et al. (2007).

A.1.1. Mass balances

The mass balances associated with the manufacturing plants
and warehouses are expressed via constraints (5) and (6) (for
plants), and (7) (for warehouses)

PUaptþ
X

gAOUTðpÞ

Wgapt ¼
X

w

QPL
awptþ

X
gA INðpÞ

Wgapt 8a,p,t ð5Þ

Wgapt ¼ xgpWgap0t 8g,a,p,t 8p0AMPðgÞ ð6Þ

INVwpt�1þ
X

a

QPL
awpt ¼

X
s

QWH
wsptþ INVwpt 8w,p,t ð7Þ

In these equations PUapt represents the amount of product p

purchased by plant a in period t, Wgapt is the input/output flow of
p associated with technology g at plant a in t, QPL

awpt and QWH
wspt are

the flows of p between plant a and warehouse w and between
warehouse w and market s, respectively, in t, xgp is a material
balance coefficient and INVwpt is the inventory of p kept at
warehouse w at the end of period t. Constraints (8) and (9)
impose lower and upper limits on the purchases of raw materials
(PUapt) and sales of products (SAspt), respectively. The sales of
products are determined from the flows of materials between the
warehouses and the final markets, as shown in Eq. (10).

PUPL
apt rPUPL

apt rPUPL
apt 8a,p,t ð8Þ

DMK
spt rSAspt rDMK

spt 8s,p,t ð9Þ
X
w

QWH
wspt ¼ SAspt 8s,p,t ð10Þ

A.1.2. Capacity constraints

Plants: Eq. (11) bounds the capacity expansion in each time
period (CEPL

gat), whereas Eq. (12) determines the total capacity in
period t (CPL

gat) from the previous capacity and the capacity
expansion carried out in the current period. Eq. (13) limits the
number of times that the capacity of technology g available at
plant a can be expanded during the entire planning horizon. In
constraints (11) and (13), XPL

gat is a binary variable that takes the
value of 1 if the capacity of technology g established in plant a is
expanded in period t and 0 otherwise. Further, NEXPPL

ga represents
the maximum number of capacity expansions of technology g

that can be executed in plant a during the entire time horizon.
Finally, Eq. (14) imposes lower and upper production limits based
on the existing capacities. Here, t is a parameter that denotes the
minimum percentage of the capacity that must be utilized. Note
that this parameter should always be in the range [0,1]

CEPL
gat XPL

gat rCEPL
gat rCEPL

gat XPL
gat 8g,a,t ð11Þ

CPL
gat ¼ CPL

gat�1þCEPL
gat 8g,a,t ð12Þ

X
t
XPL

gat rNEXPPL
ga 8g,a ð13Þ

tCPL
gat rWgapt rCPL

gat 8g,a,t ð14Þ

Warehouses: Constraints (15)–(17) are equivalent to
Eqs. (11)– (13), but apply to warehouses

CEWH
wt XWH

wt rCEWH
wt rCEWH

wt XWH
wt 8w,t ð15Þ

CWH
wt ¼ CWH

wt�1þCEWH
wt 8w,t ð16Þ

X
t

XWH
wt rNEXPWH

w 8w ð17Þ

In these equations CWH
wt and CEWH

wt denote the total capacity and
capacity expansion associated with warehouse w in period t, respec-
tively. On the other hand, XWH

wt is a binary variable that takes the value
of 1 if the capacity of a warehouse is expanded in period t and
0 otherwise, whereas NEXPWH

w represents the maximum allowable
number of times that the capacity of a warehouse can be expanded.
Eqs. (18) and (19) impose limits on the inventory kept at each
warehouse at the end of period t (INVwpt) and also on the average
inventory level (ILwt), which is calculated via Eq. (20). Note that
Eq. (18) accounts for possible fluctuations in the demand by assuming
that the capacity required to handle a given amount of products,
considering regular shipment and delivery schedule, is twice the
average storage inventory level kept at the warehouse (Shapiro, 2001)X

p

INVwpt rCWH
wt 8w,t ð18Þ

2ILwt rCWH
wt 8w,t ð19Þ

ILwt ¼

P
s

P
pQWH

wspt

TORw
8w,t ð20Þ

Transportation links: The amount of products sent from plants
to warehouses (QPL

awt) and from warehouses to plants (QWH
wst) must

lie between upper and lower limits, provided a transportation link
between the corresponding nodes of the network is established,
as stated in Eqs. (21) and (22). In these equations, YPL

awt and YWH
wst

are binary variables that represent the existence of transportation
links between plants and warehouses and between warehouses
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and markets, respectively

QPL
awt YPL

awt rQPL
awt rQPL

awt YPL
awt 8a,w,t ð21Þ

QWH
wst YWH

wst rQWH
wst rQWH

wst YWH
wst 8w,s,t ð22Þ

A.1.3. Objective function

NPV: Eqs. (23)–(30) allow to calculate the NPV, which is
determined from the cash flow in each period t (CFt)

NPV ¼
X

t

CFt

ð1þ irÞt�1
ð23Þ

CFt ¼NEt�FTDCt , t¼ 1, . . . ,NT�1 ð24Þ

CFt ¼NEt�FTDCtþSVFCI, t¼NT ð25Þ

NEt ¼ ð1�jÞ
X

s

X
p

gFP
sptSAspt�

X
a

X
p

gRM
aptPUapt

"

�
X

g

X
a

X
pAMPðgÞ

vgaptWgapt�
X

w

pwtILwt�
X

a

X
w

X
p

cPL
awptQ

PL
awpt

�
X

w

X
s

X
p

cWH
wsptQ

WH
wspt

#
þjDEPt 8t ð26Þ

DEPt ¼
ð1�SVÞFCI

NT
8t ð27Þ

FCI¼
X

g

X
a

X
t

ðaPL
gatCEPL

gatþb
PL
gatX

PL
gatÞ

þ
X

w

X
t

ðaWH
wt CEWH

wt þb
WH
wt XWH

wt Þþ
X

a

X
w

X
t

ðbTPL
awtY

PL
awtÞ

þ
X

w

X
s

X
t

ðbTWH
wst YWH

wst Þ ð28Þ

FCIrFCI ð29Þ

FTDCt ¼
FCI

NT
8t ð30Þ

The cash flow is calculated from the net earnings (NEt), and the
fixed investment term in period t (FTDCt), as stated in Eqs. (24)
and (25). The net earnings are given by the difference between
the incomes (i.e., sales of products) and the total cost, which
accounts for the raw materials cost, the operating and inventory
costs and the transportation expenses, as shown in Eq. (26).
Eq. (27) is used to determine the depreciation of the capital
invested (DEPt) assuming the straight-line method. The total fixed
cost investment FCI appearing in Eq. (27) is determined from the
capacity expansions made in plants and warehouses and the
establishment of transportation links within the time horizon, as
stated in Eq. (28). Eq. (29) imposes an upper limit on the total
capital investment. Finally, Eq. (30) determines the payments of
the total fixed capital investment, which are assumed to be
equally distributed over time.

Environmental impact: the environmental performance of the
network is quantified by the three damage categories following
the Eco-indicator 99 methodology (PRé-Consultants, 2000). This
requires the calculation of the life cycle inventory associated with
the SC operation (Eq. (31)), which includes the emissions released
and feedstock requirements (LCIb) associated with the manufac-
turing and distribution tasks carried out in the SC entities. These
entries of the life cycle inventory, which are given by the
production of raw materials (PUapt), the manufacture of final
products (Wgapt) and the transportation of materials between
plants and warehouses (QPL

awpt) and warehouses and final markets
(QWH

wspt), are then translated into a set of environmental damages
(DAMd) by using Eq. (32). In the latter equation, ybd represents the
impact in damage category d per unit of chemical b released to/
extracted from the environment.

LCIb ¼
X

a

X
p

X
t

oPU
bp PUaptþ

X
g

X
a

X
pAMPðgÞ

X
t

oPR
bpWgapt

þ
X

g

X
a

X
pAMPðgÞ

X
t

oEN
b ZEN

gapWgaptþ
X

a

X
w

X
p

X
t

oTR
b xPL

awQPL
awpt

�
X

w

X
s

X
p

X
t

oTR
b xWH

ws QWH
wspt 8b ð31Þ

DAMd ¼
X

b

ybdLCIb 8d ð32Þ
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