Modelling emergent rhythmic activity in the cerebal cortex

Author

Dornelles, Leonardo dalla Porta

Director

Sánchez Vives, Maria Victoria

Codirector

Destexhe, Alain

Date of defense

2022-10-07

Pages

135 p.



Department/Institute

Universitat Politècnica de Catalunya. Departament de Física

Doctorate programs

Física computacional i aplicada

Abstract

The brain, a natural adaptive system, can generate a rich dynamic repertoire of spontaneous activity even in the absence of stimulation. The spatiotemporal pattern of this spontaneous activity is determined by the brain state, which can range from highly synchronized to desynchronized states. During slow wave sleep, for example, the cortex operates in synchrony, defined by low-frequency fluctuations, known as slow oscillations (<1Hz). Conversely, during wakefulness, the cortex is characterized mainly by desynchronized activity, where low-frequency fluctuations are suppressed. Thus, an inherent property of the cerebral cortex is to transit between different states characterized by distinct spatiotemporal complexity patterns, varying in a large spectrum between synchronized and desynchronized activity. All these complex emergent patterns are the product of the interaction between tens of billions of neurons endowed with diverse ionic channels with complex biophysical properties. Nevertheless, what are the mechanisms behind these transitions? In this thesis, we sought to understand the mechanisms and properties behind slow oscillations, their modulation and their transitions towards wakefulness by employing experimental data analysis and computational models. We reveal the relevance of specific ionic channels and synaptic properties to maintaining the cortical state and also get out of it, and its spatiotemporal dynamics. Using a mean-field model, we also propose bridging neuronal spiking dynamics to a population description.


El cerebro, un sistema adaptativo natural, es capaz de generar un amplio repertorio dinámico de actividad espontánea, incluso en ausencia de estímulos. La patrón espacio-temporal de esta actividad espontánea viene determinada por el estado cerebral, el cual puede variar de estados altamente sincronizados hasta estados muy desincronizados. Cuando en el sueño se entra en la fase de ondas lentas, por ejemplo, la corteza opera en sincronía, cuya actividad es definida por fluctuaciones de baja frecuencia, conocidas como oscilaciones lentas (<1Hz). En cambio, durante la vigilia, el córtex se caracteriza principalmente por tener una actividad desincronizada, donde las fluctuaciones de baja frecuencia desaparecen. Por lo tanto, una propiedad inherente de la corteza cerebral es transitar entre diferentes estados caracterizados por distintos patrones de complejidad espacio-temporal, los cuales se sitúan dentro del amplio espectro marcado por la actividad sincronizada y la desincronizada. Estos patrones emergentes son el producto de la interacción entre decenas de miles de millones de neuronas dotadas de múltiples y distintos canales iónicos con complejas propiedades biofísicas. Sin embargo, ¿cuáles son los mecanismos que regulan estas transiciones? En esta tesis tratamos de entender los mecanismos, propiedades y sus transiciones hacia la vigilia, que están detrás de las oscilaciones lentas a través del uso y análisis de datos experimentales y modelos computacionales. En ella describimos la importancia de los canales iónicos específicos y sus propiedades sinápticas tanto para mantener el estado cortical como para salir de él, estudiando así su dinámica espacio-temporal. Además, mediante el uso de un modelo de campo medio, proponemos establecer un puente que pueda describir la dinámica de disparos neuronales con una descripción general de la población neuronal.

Subjects

577 - Material bases of life. Biochemistry. Molecular biology. Biophysics; 612 - Physiology. Human and comparative physiology

Knowledge Area

Àrees temàtiques de la UPC::Física

Note

A la portada consta: IDIBAPS Institut d'Investigacions Biomèdiques August Pi i Sunyer

Documents

TLDPD1de1.pdf

25.07Mb

 

Rights

ADVERTIMENT. Tots els drets reservats. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs.

This item appears in the following Collection(s)